Despite various anti-tuberculosis measures in the setting of HIV infection, the epidemiological situation of tuberculosis in Russia is deteriorating. We have analyzed the data of statistical report form no. 61 for years 2004–2014, surveillance data on individual TB cases with HIV coinfection for years 2004–2014 (personal data) and TB care arrangements for patients with HIV in 20 regions. The main causes of the deteriorating epidemiological situation are the growing immunodeficiency in patients with TB coinfection, unseparated epidemiologically dangerous patient flows (patients with tuberculosis and HIV-infected patients) and low quality preventative measures in special care medical facilities. Chemoprophylaxis can be an effective method of controlling the spread of tuberculosis among HIV-infected patients if it is recommended by a qualified tuberculosis therapist to patients adhering to regular drug intake under supervision of medical personnel. Otherwise a large scale chemoprophylaxis can result in an increased proportion of patients with drug-resistant tuberculosis. This works suggests criteria for the evaluation of tuberculosis care effectiveness considering the pathogenesis of the disease during late stages of HIV.
VIEWS 4758
Brain-computer interfaces (BCIs) are a promising technology intended for the treatment of diseases and trauma of the nervous system. BCIs establish a direct connection between the brain areas that remain functional and assistive devices, such as powered prostheses and orthoses for the arms and legs, motorized wheelchairs, artificial sensory organs and other technologies for restoration of motor and sensory functions. BCIs of various kinds are currently developing very rapidly, aided by the progress in computer science, robotic applications, neurophysiological techniques for recording brain activity and mathematical methods for decoding neural information. BCIs are often classified as motor BCIs (the ones that reproduce movements), sensory BCIs (the ones that evoke sensations), sensorimotor BCIs (the ones that simultaneously handle motor and sensory functions), and cognitive BCIs intended to regulate the higher brain functions. All these BCI classes can be either invasive (i. e. penetrating the body and/or the brain) or noninvasive (i.e. making no o little contact with the body surface). Noninvasive BCI are safe to use and easy to implement, but they suffer from signal attenuation by scalp and skin, its contamination with noise and artifacts, and an overall low information transfer rate. Invasive BCIs are potentially more powerful because they utilize implanted grids that can both record neural signals in high-resolution and apply stimulation to the nervous tissue locally to deliver information back to the brain. BCI technologies are being developed not only for individual use, but also for collective tasks performed by multiple interconnected brains.
VIEWS 5551
The article presents preliminary results of iMove research study. By the time of this publication, the data of 47 patients have been processed. The patients in the experimental group (n = 36) were trained in kinesthetic motor imagery using brain-computer interface (BCI) and a controllable exoskeleton. In the control group, BCI imitation procedures were carried out. In average, the patients had 9 training sessions with a duration of up to 40 minutes. On completing the training, only the experimental group showed improvement in scores (results are presented as median and quartiles (25 %; 75 %)): grasp score increased from 0.5 (0.0; 13.0) to 3.0 (0.0; 15.5) points (р = 0.003) and pinch score increased from 0.5 (0.0; 7.5) to 1.0 (0.0; 12.0) points (р = 0.005) on ARAT scale. In the experimental group, a significant improvement in motor function was found in 33.3 % patients on ARAT scale, and in 30.5 % patients on Fugl-Meyer scale. In the control group, those scores were lower: 9.1 % and 18.2 % patients, respectively.
VIEWS 5571
β-amyloid peptide (Аβ) is an important component of the neurodegeneration mechanism in Alzheimer’s disease. This work investigates the effect of intrahippocampal injection of Аβ(25–35) fragment on nerve growth factor (NGF) signalling. Aggregated Аβ(25–35) was injected into rat dorsal hippocampus. Rats in the control group received injections of the peptide with an inverted amino acid sequence and a solvent. It was shown that Аβ(25–35) induces neuron death in rat hippocampus. Neurodegeneration was accompanied by a statistically significant increase (p < 0.05) in p75NTR neurotrophin receptor expression in all animals who had received exogenous peptides, and by an increased level of NGF in the hippocampus of those rats who had been injected with Аβ(25–35). The study results demonstrate that changes in the hippocampus induced by Аβ(25–35) are accompanied by increased NGF signalling, which, to some extent, supports the current clinical data obtained from patients with Alzheimer’s. The changes mentioned above are compensatory. However, both damage reparation and further degenerative processes can be the ultimate outcome.
VIEWS 4770