Внутриклеточный рН как ранний дифференциальный маркер глюкокортикоид-индуцированного апоптоза фибробластов кожи

А.С.Духанин, П.А.Малкин, Н.Л.Шимановский
Российский национальный исследовательский медицинский университет им. Н.И.Пирогова, кафедра молекулярной фармакологии и радиобиологии им. академика П.В.Сергеева медико-биологического факультета, Москва
(зав. кафедрой - чл.-кор. РАМН, проф. Н.Л.Шимановский)

[^0]
Intracellular pH as the Early Differential Marker of Glucocorticoid-Induced Apoptosis of Skin Fibroblasts

A.S.Dukhanin, P.A.Malkin, N.L.Shimanovskiy
Pirogov Russian National Research Medical University, Department of Molecular Pharmacology and Radiobiology named after Academician P.V.Sergeev of Medical-Biological Faculty, Moscow (Head of the Department - Corr. Member of RAMS, Prof. N.L.Shimanovskiy)

Early stages of dexamethasone-induced fibroplast apoptosis include changes in intracellular homeostasis determined by decreasing pH of the cytoplasm and increased intracellular calcium ion concentration. $\mathrm{Na}^{+} / \mathrm{H}^{+}$-transporter and plasma membrane calcium channels are molecular targets for the action of dexamethasone.
Key words: apoptosis, intracellular pH, calcium, glucocorticoids, fibroblasts

Aпоптотический процесс, лежащий в основе фармакологического действия глюкокортикоидов при лечении многих аллергических заболеваний, можно разделить на две последовательные стадии [1, 2]. Первая включает ранние биохимические изменения (нарушение кальциевого гомеостаза, исчезновение мембранных потенциалов, снижение внутриклеточного рН и др.), степень проявления которых зависит от природы индуктора апоптоза. Вторая стадия — морфологические изменения клетки, которые можно наблюдать с помощью светового микроскопа (уменьшение объема клетки, кариорексис, образование апоптозных телец и др.). Однако многие из вышеперечисленных биохимических и морфологических изменений встречаются отдельно сами по себе при различных формах клеточной активности, при некротической гибели клетки и не могут быть отнесены к фармако-

[^1]биохимическим маркерам апоптоза. Таким образом, последовательность начальных этапов апоптоза, приводящих к запрограммированной гибели клетки, на сегодняшний день остается мало изученной. Кроме того, недостаточно ясно, после какого этапа апоптотические изменения становятся необратимыми и клетка неминуемо гибнет.

Целью настоящей работы было определение фармакобиохимических маркеров начальных этапов апоптоза фибробластов, индуцированного глюкокортикоидами.

Материалы и методы

Внутриклеточный уровень свободных ионов кальция определяли с помощью флуоресцентного индикатора Fura-2/AM по описанной ранее методике [3]. Величину цитоплазматического pH в клетках оценивали с помощью флуоресцентного зонда BCECF/AM [4]. Для индукции некротической формы гибели фибробластов использовали экспериментальную модель окислительного стресса. Клетки инкубировали в присутствии t-бутилгидропероксида (БГП) - химического вещества, вызывающего окислительную деструкцию клеток в течение 8-12 ч. В нашей работе оценивалось изменение внутриклеточного $\mathrm{pH}\left(\mathrm{pH}_{\text {вн }}, \mathrm{pH}_{\mathrm{i}}\right)$ в первые 1,5 ч инкубации, поскольку дальнейшее увеличение времени инкубации приводило к на-

рушению целостности клеток, регистрируемому при световой микроскопии.

Для статистической обработки полученных результатов был использован параметрический метод Стьюдента. Данные приведены в виде значений среднего арифметического \pm доверительный интервал (при уровне значимости, равном 0,05).

Результаты исследования и их обсуждение

Постоянство внутриклеточного pH в покоящихся клетках определяется буферными свойствами внутриклеточных компонентов: белков, нуклеотидов, неорганических фосфатов и карбонатов. Активным компонентом H^{+}-обмена служит $\mathrm{Na}^{+} / \mathrm{H}^{+}$-переносчик, локализованный в плазматической мембране и осуществляющий обмен внеклеточного иона натрия на внутриклеточный протон. Движущей силой переноса является электрохимический градиент Na^{+}(потенциал покоя плазматической мембраны фибробластов составляет примерно -60 мВ).

В задачи первой части исследования входило изучение влияния глюкокортикоидов на величину $\mathrm{pH}_{\text {вн }}$ с помощью флуоресцентного зонда BCECF, сравнение закономерностей изменения $\mathrm{pH}_{\mathrm{вH}}$ при апоптотической и некротической формах гибели фибробластов. Величина $\mathrm{pH}_{\text {вн }}$ в контрольных образцах клеток, в отсутствие химического воздействия (контроль 1), составляла $7,12 \pm 0,05(n=6)$ и незначительно изменялась в течение всего времени наблюдения. Через 1,5 ч значение $\mathrm{pH}_{\text {вн }}$ в контрольных пробах составляло 7,03 $\pm 0,05$ ($n=3$).

В стандартных условиях эксперимента значение рН инкубационной среды ($\mathrm{pH}_{\text {внеш }}$) составляло $7,35 \pm 0,02$. В начальный момент времени значение $\mathrm{pH}_{\text {вн }}$ в клетках, подвергшихся воздействию БГП, равнялось $7,09 \pm 0,06(n=4)$ и достоверно не отличалось от такового в контрольных клетках. По мере увеличения времени инкубации с БГП величина $\mathrm{pH}_{\text {вн }}$ плавно повышалась, выходя на плато к 75-й минуте наблюдения (рис. 1, кривая 1). При этом конечное значение $\mathrm{pH}_{\text {вн }}$ составляло $7,35 \pm 0,04(n=4)$, что соответствовало величине $\mathrm{pH}_{\text {внеш }}$. Можно предположить, что наблюдается выравнивание pH во внеклеточном и внутриклеточном пространствах.

Для проверки этого предположения была использована инкубационная среда со значением $\mathrm{pH}_{\text {внеш }}$, равным $7,5 \pm 0,02$. В новых условиях эксперимента динамика изменений $\mathrm{pH}_{\text {вн }}$ в целом имела сходный характер, однако конечные значения $\mathrm{pH}_{\text {вн }}$ составляли уже $7,51 \pm 0,07(n=3)$ (рис. 1, кривая 2). Сле-

дует отметить, что значения $\mathrm{pH}_{\text {вн }}$ в контрольных образцах фибробластов (контроль 2), инкубируемых в среде с $\mathrm{pH}_{\text {внеш }}$ 7,5 , колебались в пределах $7,02-7,16$, достоверно не отличаясь от уровня $\mathrm{pH}_{\text {вн }}$ в контроле 1 .

Таким образом, при некротической форме гибели клеток наблюдаются нарушения гомеостатической функции плазматической мембраны, выражающиеся в выравнивании $\mathrm{pH}_{\text {вн }}$ и $\mathrm{pH}_{\text {внеш }}$ к 75 -й мин после начала воздействия БГП. Маловероятно, что повышение $\mathrm{pH}_{\text {вн }}$ связано с активацией $\mathrm{Na}^{+} / \mathrm{H}^{+}$обмена, так как добавление в суспензию клеток селективного ингибитора антипорта препарата амилорида (200 мкМ) не влияло на динамику изменения $\mathrm{pH}_{\text {вн }}$.

Внесение в среду инкубации, наряду с БГП, ингибитора синтеза АТФ 2-дезоксиглюкозы и блокатора киназных реакций трифлуоперазина усугубляло нарушения клеточного гомеостаза: выравнивание $\mathrm{pH}_{\text {вн }}$ и $\mathrm{pH}_{\text {внеш }}$ регистрировали к 60 -й минуте инкубации (рис. 1, кривая 3).

Апоптотическую форму гибели фибробластов индуцировали дексаметазоном (1 мкМ). Инкубация клеток с дексаметазоном приводила к закислению внутриклеточной среды. Достоверные изменения $\mathrm{pH}_{\text {вн }}$ регистрировали начиная с $45-$ й минуты инкубации (значение $\mathrm{pH}_{\text {вн }}$ составляло $6,95 \pm 0,04$; $n=4$). В последующий отрезок времени величина $\mathrm{pH}_{\text {вн }}$ плавно уменьшалась и достигала значения $6,87 \pm 0,04$ к концу наблюдения (рис. 2). Предварительное внесение в среду инкубации 2-дезоксиглюкозы и трифлуоперазина отменяло изменения $\mathrm{pH}_{\text {вн }}$, индуцированные дексаметазоном. Полученные данные указывают на участие в pH -ответе фибробластов энергетически-зависимых реакций.

Для изучения молекулярных механизмов действия дексаметазона на $\mathrm{Na}^{+} / \mathrm{H}^{+}$-обмен были использованы два экспериментальных подхода, включающих оценку влияния глюкокортикоида на активацию $\mathrm{Na}^{+} / \mathrm{H}^{+}$-обмена в фибробластах с помощью ангиотензина II и активатора фосфоинозитидного обмена форболмеристатацетата (ФМА). Полученные данные суммированы в таблице. Достоверное увеличение $\mathrm{pH}_{\text {вн }}$ наблюдали, начиная с 45-й минуты инкубации клеток с ангиотензином II или ФМА, на $75-$ й минуте значения $\mathrm{pH}_{\text {вн }}$ составляли 7,28 и 7,32 соответственно. Подъем $\mathrm{pH}_{\text {вн }}$, вызванный ангиотензином II или ФМА, блокировался амилоридом. Дексаметазон ингибировал подъем $\mathrm{pH}_{\text {вн }}$ на всех экспериментальных моделях.

Таким образом, ингибирующее действие дексаметазона на $\mathrm{Na}^{+} / \mathrm{H}^{+}$-обмен в фибробластах может быть отнесено к ранним, негеномным эффектам глюкокортикоидов, а ингибирование

Таблица. Влияние различных экспериментальных условий на $\mathbf{p H}$ ф фибробластов

Экспериментальные условия	Время инкубации, мин					
	0	15	30	45	60	75
Контроль	7,12 $\pm 0,05$	7,12 $\pm 0,05$	7,10 $\pm 0,06$	7,08 $\pm 0,05$	7,06 $\pm 0,05$	7,03 $\pm 0,05$
Дексаметазон, 1 мкМ	7,10 $\pm 0,04$	7,06 $\pm 0,05$	$7,02 \pm 0,04$	6,95 $\pm 0,04 *$	6,92 $\pm 0,04 *$	6,89 $\pm 0,05^{*}$
Ангиотензин II, 100 нМ	7,12 $\pm 0,05$	$7,17 \pm 0,05$	7,20 $\pm 0,06$	7,25 $\pm 0,04 *$	7,30 $\pm 0,05^{*}$	7,28 $\pm 0,05^{*}$
$\begin{aligned} & \text { Ангиотензин II, } 100 \text { нM + амилорид, } \\ & 200 \text { мкМ } \end{aligned}$	7,12 $\pm 0,05$	-	7,11 $\pm 0,05$	-	7,08 $\pm 0,05$	-
Ангиотензин II, 100 нM + дексаметазон, 1 мкМ	7,12 $\pm 0,05$	7,06 $\pm 0,05$	7,12 $\pm 0,04$	7,09 $\pm 0,04^{* *}$	7,08 $\pm 0,04^{* *}$	7,10 $\pm 0,05^{* *}$
ФМА, 20 нМ	7,11 $\pm 0,05$	7,18 $\pm 0,05$	$7,21 \pm 0,04$	7,26 $\pm 0,05^{*}$	$7,30 \pm 0,06 *$	$7,32 \pm 0,05^{*}$
ФМА, 20 нМ + амилорид, 200 мкМ	$7,11 \pm 0,05$		$7,11 \pm 0,05$		$7,08 \pm 0,05$	
ФМА, 20 нМ + дексаметазон, 1 мкМ	7,11 $\pm 0,05$	7,06 $\pm 0,05$	$7,10 \pm 0,04$	7,06 $\pm 0,04^{* * *}$	7,09 $\pm 0,04^{* * *}$	7,11 $\pm 0,05^{* * *}$
Условия: дексаметазон добавляли в инкубационную среду за 3-5 мин до внесения изучаемых препаратов (ФМА, ангиотензин II, амилорид). Отсчет времени в таблице указан с момента введения препаратов. Обозначения: ФМА - форболмеристатацетат. *- достоверное отличие $(p<0,05)$ от контрольных значений; ** - достоверное отличие ($p<0,05$) по отношению к действию ангиотензина II; *** - достоверное отличие ($p<0,05$) по отношению к действию ФМА						

$\mathrm{Na}^{+} / \mathrm{H}^{+}$-обмена - к ранним проявлениям апоптотического пути гибели клеток, индуцированного дексаметазоном.

В задачи второй части исследования входило исследование динамики апоптотического изменения концентрации ионов Ca^{2+} в цитоплазме фибробластов с помощью флуоресцентного индикатора FURA-2. По нашим данным, базальный уровень $\left[\mathrm{Ca}^{2+}\right]_{\text {цит }}$ в фибробластах составляет в среднем 105 ± 9 нМ. Влияние дексаметазона на уровень $\left[\mathrm{Ca}^{2+}\right]_{\text {цит }}$ в фибробластах характеризуется дозовой и временной зависимостью (рис. 3). При концентрациях дексаметазона 0,1 и 1 мкМ наблюдается плавное нарастание $\left[\mathrm{Ca}^{2+}\right]_{\text {цит }}$ в течение всего времени наблюдения (0-2,5 ч). При концентрации дексаметазона 10 мкМ через 2 ч инкубации наблюдается резкое увеличение концентрации внутриклеточных ионов кальция до 187 нМ (178% от начальной величины), значение $\left[\mathrm{Ca}^{2+}\right]_{\text {цит }}$ сохраняется и через 2,5 ч наблюдения.

При повторении эксперимента в бескальциевой среде увеличения $\left[\mathrm{Ca}^{2+}\right]_{\text {цит }}$ не наблюдалось. Это позволило предположить, что эффект дексаметазона реализуется на уровне плазматической мембраны клеток. По-видимому, увеличение $\left[\mathrm{Ca}^{2+}\right]_{\text {цит }}$ связано с изменением проницаемости мембраны для ионов Ca^{2+}, а не с мобилизацией их из внутриклеточных депо. Для определения механизма изменения проницаемости мембраны при действии дексаметазона были поставлены следующие эксперименты. Одновременно с дексаметазоном в суспензию клеток вносили блокатор синтеза PHK актиномицин D или ингибитор трансляции циклогексемид. Указанные соединения достоверно изменяли динамику кальциевого ответа фибробластов на дексаметазон: отсутствовал резкий подъем уровня $\left[\mathrm{Ca}^{2+}\right]_{\text {цит }}$ через 2 ч инкубации с дексаметазоном (рис. 4). Однако тот факт, что ответ не отменялся полностью, свидетельствует о вкладе как геномных, так и негеномных механизмов глюкокортикоидного эффекта.

Нарушение процесса апоптоза (его усиление или ослабление) является основой ряда заболеваний, затрагивающих различные системы, в том числе и иммунную. K таким

Рис. 1. Динамика изменения $\mathrm{pH}_{\text {; }}$ в фибробластах при некротической форме гибели (модель окислительного стресса). Обозначения: кривая 1 - в присутствии 100 мкМ БГП, рН инкубационной среды 7,35; кривая 2 - в присутствии 100 мкМ БГП, рН инкубационной среды 7,5 ; кривая 3 - в присутствии 100 мкМ БГП, 30 мМ 2-дезоксиглюкозы и 50 мкМ трифлуоперазина, pH инкубационной среды 7,5.

заболеваниям относят ревматоидный артрит, псориаз, инсулинзависимый сахарный диабет и ряд других аутоиммунных патологий [6]. Патогенетические механизмы, связанные с повышенным проявлением апоптоза, являются ведущими в развитии нейродегенеративных заболеваний, последствий ишемии (включая инфаркт миокарда), апластической анемии, токсических гепатитов (в частности, алкогольных).

Апоптотическая реакция лежит в основе фармакологического действия глюкокортикоидов при лечении многих аллер-

Рис. 2. Динамика изменения pH_{i} в фибробластах при апоптотической форме гибели, индуцированной дексаметазоном. Обозначения: кривая 1 - в присутствии 1 мкМ дексаметазона; кривая 2 - в присутствии 1 мкМ дексаметазона, 30 мМ 2-дезоксиглюкозы, 50 мкМ трифлуоперазина.

Рис. З. Изменение концентрации цитозольного кальция в фибробластах на ранних стадиях апоптоза, индуцированного дексаметазоном. Обозначения: * - достоверное отличие ($\mathrm{p}<0,05$) от контрольных значений; ** - достоверное отличие ($\mathrm{p}<0,05$) по отношению к действию 1 мкМ дексаметазона.

Рис. 4. Изменение концентрации цитозольного кальция в фибробластах в различных экспериментальных условиях.

гических, в том числе кожных заболеваний, в патогенезе которых принимают участие фибробласты. При этом возможны как желательные иммунодепрессивные эффекты гормональной терапии (апоптоз иммунокомпетентных Т-лимфоцитов) [1, 7], так и нежелательное атрофическое влияние стероидов на кожу (апоптоз фибробластов) [8]. В связи с этим одним из перспективных направлений для дальнейшего совершенствования этого класса лекарственных препаратов является создание средств с преимущественно внегеномным механизмом действия. Вероятно, именно это позволит повысить их клиническую эффективность и уменьшить потенциальную возможность развития нежелательного действия на кожу [9]. Один из потенциальных путей разработки новых глюкокортикоидных препаратов включает разделение геномных и негеномных эффектов за счет модификации фармакологических свойств глюкокортикоидов на основе использования наноразмерных полимеров [10].

Выводы

1. На экспериментальной модели окислительного стресса установлено, что некротический путь лизиса фибробластов характеризуется ранними нарушениями механизмов поддержания внутриклеточного pH , значения которого выравниваются с рН внеклеточной среды после 60-й минуты инкубации с t-бутилгидропероксидом.
2. На экспериментальной модели апоптоза показано, что в пределах первого часа после воздействия дексаметазона

наблюдается достоверное закисление внутриклеточной среды. K одному из молекулярных механизмов рН-ответа фибробластов на действие дексаметазона относится ингибирование активности $\mathrm{Na}^{+} / \mathrm{H}^{+}$-обмена.
3. Величина внутриклеточного рН может служить ранним дифференциальным маркером апоптотической и некротической форм гибели фибробластов.

Исследование выполнено в рамках приоритетного направления развития «Инновационные технологии в изучении живых систем» Российского национального исследовательского медицинского университета им. Н.И.Пирогова.

Литература

1. Amsterdam A., Sasson R. The anti-inflammatory action of glucocorticoids is mediated by cell type specific regulation of apoptosis // Mol Cell Endocrinol. 2002. V.189. P.1-9.
2. Духанин А.С., Сергеев П.В., Патрашев Д.В. Молекулярные механизмы реализации начальных этапов глюкокортикоид-индуцированного апоптоза // Иммунология. 1998. №1. С.18-21.
3. Сергеев П.В., Галенко-Ярошевский П.А., Ханкоева А.И., Духанин А.С. Исследование влияния бефола на кальциевый обмен в кардиомиоцитах с помощью флуоресцентного зонда Fura-2 // Бюл. экспер. биол. и мед. 1996. №3. C.288-291.
4. Патрашев Д.В., Духанин А.С., Огурцов С.И. Внутриклеточный рН на ранних стадиях апоптоза и некроза тимоцитов // Бюл. экспер. биол. и мед. 1999. №10. С. 387-390.
5. Лига А.Б., Ухина Т.В., Ржезников В.М., Шимановский Н.Л. Исследование пролиферативной активности фибробластов кожи крыс при воздействии глюкокортикоидов и гестагенов // Экспер. и клин. фармакол. 2008. Т.71. №5. C.44-47.
6. Viegas L.R., Hoijman E., Beato M., Pecci A. Mechanisms involved in tissuespecific apoptosis regulated by glucocorticoids // J Steroid Biochem Mol Biol. 2008. V.109. P.273-278.
7. Baschant U., Tuckermann J. The role of the glucocorticoid receptor in inflammation and immunity // J Steroid Biochem Mol Biol. 2010. V.120. P.69-75.
8. Amsterdam A., Tajima K., Sasson R. Cell-specific regulation of apoptosis by glucocorticoids: implication to their anti-inflammatory action // Biochem Pharmacol. 2002. V.64. P.843-850.
9. Шимановский Н.Л. Резистентность к глюкокортикоидам: механизмы и клиническое значение // Фарматека. 2005. №3. С.7-12.
10. МалкинП.А., ДуханинА.С.,ШимановскийН.Л.Использованиенаноразмерного кортизол-полимерного комплекса для изучения механизмов регуляции функциональной активности фибробластов кожи // Бюл. экспер. биол. и мед. 2010. Т.148. №4. С.434-436.

Информация об авторах:

Шимановский Николай Львович, член-корреспондент РАМН, профессор, заведующий кафедрой молекулярной фармакологии и радиобиологии им. академика П.В.Сергеева медико-биологического факультета Российского национального исследовательского медицинского университета им. Н.И.Пирогова
Адрес: 117997, Москва, ул. Островитянова, 1
Телефон: (495) 766-4157
E-mail: shiman@rsmu.ru
Малкин Петр Александрович, заведующий учебной лабораторией кафедры молекулярной фармакологии и радиобиологии им. академика П.В.Сергеева медико-биологического факультета Российского национального исследовательского медицинского университета им. Н.И.Пирогова
Адрес: 117997, Москва, ул. Островитянова, 1
Телефон: (495) 766-4399
E-mail: p_malkin@yandex.ru

[^0]: Ранние этапы апоптоза фибробластов, индуцированного дексаметазоном, включают изменения внутриклеточного гомеостаза, которые определяются уменьшением pH цитоплазмы и увеличением внутриклеточной концентрации ионов кальция. Молекулярными мишенями действия дексаметазона являются $\mathrm{Na}^{+} / \mathrm{H}^{+}$-обменник и кальциевые каналы плазматических мембран.
 Ключевые слова: апоптоз, внутриклеточный рН, кальций, глюкокортикоиды, фибробласты

[^1]: Для корреспонденции:
 Духанин Александр Сергеевич, доктор медицинских наук, профессор
 кафедры молекулярной фармакологии и радиобиологии им. академика П.В.Сергеева медико-биологического факультета Российского национального исследовательского медицинского университета им. Н.И.Пирогова
 Адрес: 117997, Москва, ул. Островитянова, 1
 Телефон: (495) 766-4399
 E-mail: das03@rambler.ru
 Статья поступила 16.07.2012, принята к печати 19.12.2012

