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CELL SURFACE AMYLOID PROTEINS OF MICROORGANISMS:
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This review summarizes data which describe properties of microbial cell surface amyloids proteins. Definitions of amyloids
and microbial functional amyloids are given. The review provides numerous examples of research in which the presence of
amyloid-like properties in microbial cell surface proteins is demonstrated convincingly. Studies of the important role of pili, curli,
tafi and some other bacterial fibrillar proteins in host colonization are reviewed. Data on amyloid proteins of yeast cell surface,
their properties and potential association with candidiasis development are summarized. This review also appeals to experts
in biology and medicine in an attempt to draw their attention to the issue which is increasingly discussed in scientific work
at present, namely to a possible role of bacterial extracellular matrix amyloids and amyloid proteins of eukaryotic microorganism
surface, yeast in the first place, in the development of amyloidosis in animals and humans.
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AMUAOUAHDBIE BEAKU NOBEPXHOCTU MUKPOOPTAHWU3MOB:
CTPYKTYPA, CBOUCTBA U 3BHAYEHUE AAS1 MEAULLUHDI

B. B. PekcTuHa', A. A. TopkoBckuiA?, E. E. BeacoHos?, T. C. KanebuHa'™

"Kadhenpa MonekynspHol 61onorumn, G1nonorm4eckimin axynsTer,
MOCKOBCKMIN roCynapCTBEHHbIN yH1BEpCUTET UMeHn M. B. JlomoHocosa, Mockea

2 [TabopaTopust BUOXMMUM 1 FEHETVIKM,
HaumoHanbHbIM MHCTUTYT anabeTa, 3abonesanHmin XKKT 1 novek, HaumoHanbHbIN MHCTUTYT 300p0oBbs, betecaa, Mapunena, CLLUA

B 0630pe cymmmnpoBaHbl faHHbIe, MOCBSLLEHHbIE OMMCaHMIO CBONCTB aMUIonOHbIX 6EIKOB MOBEPXHOCTU KNETOK MUKPOOP-
raHn3moB. OnpeaeneHbl MOHATUST «aMmnuiona» U «YyHKUMOHaBbHBI aMUaond» MUKPOOPraHM3MOoB. [prBeagHbl MHOMo4MC-
JIEHHbIE MPUMEPbI CCNEA0BaHWN, B KOTOPbIX YOEAUTENBHO MOKa3aHO HanyMe aMUIOVAHbIX CBONCTB Yy BENKOB KIETOYHOM
MOBEPXHOCTU MUKPOOPIraH3MOB. PacCcMOTpeHbl paboTbl, AEMOHCTRUPYIOLLUME BaXKHYIO POSb MUNEN, Kyprer, Tadm 1 HEKO-
TOPbIX APYrMX PUOPUNSPHBLIX 6ENKOB BaKTepWin B KONOHM3aLMM opraHmudma xossuHa. OBo6LLEeHb! AaHHble 00 aMUIOUAHBIX
Benkax MOBEPXHOCTU KNETOK APOXCOKEN, X CBONCTBAX Y BO3MOXKHOW POV B pa3BuTUM kaHamao3oB. O630p Takke npr3saH
NpvBAEYb BH/MAaHME CNeunanMcToB B 061acTh MeaULIMHBI U B1ONorMm Ko Bce 6ornee akTMBHO 0BCy»KaaeMoMy B IMTepaType
BOMPOCY O BOSMOXXHOM Yy4aCTUM aMUNOVA0B BHEKIIETOYHOIO MaTpuKca BakTepui, a Takke aMmmionaHbIX 6enKoB MOBEPXHO-
CTU 3YyKapUOTUHECKNX MUKPOOPIraHN3MOB, B MEPBYIO OYEPEdb APOXOKEN, B PA3BUTUN aMUIONA030B XUBOTHbIX 1 YenoBeka.
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The human microbiome is composed of an average of 10"  in higher animals and humans, tuberculosis and Alzheimer’s
microbial cells [1], many of which have amyloid proteins on their  disease [2-6].

surfaces. Some recent studies have lead us to hypothesize that From a medical perspective, the analysis and deep
the presence of those amyloids can contribute to the onsetand  understanding of processes and molecular mechanisms
development of many diseases such as systemic amyloidoses  underlying the assembly of amyloid structures in pro- and
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eukaryote microorganisms offer broad opportunities. In
the first place, the above-said refers to the elaboration of
protection strategies against the negative impact of amyloids
on humans and animals. It is important to understand how to
most effectively prevent the formation of bacterial biofiims by
pathogenic microorganisms or destroy those already formed,
and to mitigate the effect of amyloid formation in animals and
humans caused by exposure to microbial amyloids.

Amyloids are protein fibrils  with  cross-p-structure.
Composed of monomers, they are B-sheets in which parallel
or antiparallel B-strands run perpendicular to the fiber axis. The
distance between the neighboring strands inside a p-sheet is
0.47 nm; the one between the neighboring p-sheets is 0.8 to
1.2 nm [7, 8]. Hydrogen bonding between peptide backbones
of neighboring strands has an important role in stabilizing the
structure of amyloid fibrils. Interactions between lateral groups
of amino acid residues of neighboring polypeptides, such as
hydrogen bonding, ionic and hydrophobic interactions, and
stacking interactions, also contribute to the stabilization of the
amyloid structure. High resistance to the fluctuations of such
environmental parameters as hydrophobicity, salt concentration,
pH, temperature, pressure, exposure to denaturing agents and
proteinases is characteristic of amyloids, which is determined
by a large number of interactions involved in stabilizing their
structure [2, 9-12].

Because amyloids cause many widely spread incurable
diseases (the amyloidoses), they have long been actively
explored in humans and animals. Pili (from Latin pilus — a
hair) were described in the middle of the 20th century in gram-
negative and gram-positive bacteria [13]. However, it has
been discovered recently that many structures on microbial
surfaces are amyloid fibrils. By now, curli (from English a curl)
or tafi (thin aggregative fimbriae) have been described in such
bacteria genera as Escherichia, Neisseria, Yersinia, Shigella and
Salmonella [2, 3, 10, 11, 14-17]. Pili have been described in
Streptococcus genus, specifically, in Streptococcus agalactiae,
Streptococcus pyogenes and Streptococcus pneumoniae, in
Mycobacterium tuberculosis and other gram-positive bacteria.
The assembly mechanisms of these structures and their role in
host colonization have been described in sufficient detail [13].

It is well known that amyloids, specifically the so-called
class | hydrophobins, are present on the surface of flamentous
fungi, such as Aspergillus fumigatus [18]. Amyloids are found
in microorganisms among structural molecules, adhesins
and toxins. Along with the structures mentioned above, a
growing list of already described amyloids includes phenol-
soluble modulins of Staphylococcus aureus [12, 19], adhesins
of Candida albicans [20, 21], and amyloids formed by TasA
protein in Bacillus subtilis [22—24].

In the course of study of microbial surface amyloid proteins,
the term “functional amyloids” was coined [25]; functional
amyloids are amyloid-forming proteins that are not associated
with pathologies in microorganisms and perform functions
useful for microbial cells. A number of published works have
demonstrated that the formation of functional amyloids
is possible not just in microorganisms; a supposition has
been made that they exist in all domains of the living world
and participate in various processes, from biofilm formation
in microbial communities to long-term memory regulation
in animals [7]. This review will look at some examples of
how amyloid proteins of microbial surfaces contribute to the
development of diseases in animals and humans, and present
some data characterizing the structure of these amyloids and
the conditions under which they are formed.
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Amyloids participating in the formation of bacterial

extracellular matrix

Curli and tafi are the main protein components necessary
for the extracellular matrix formation. They are present on
the surface of many gram-negative bacteria, including a
number of strains of Escherichia coli, Salmonella spp. and
other Enterobacteriaceae [10, 11, 14-17]. E. coli curli bind
to many human proteins, including fibronectin, laminin, type |
collagen, major histocompatibility complex class | molecules,
plasminogen and some others [26-29], and contribute to
pathogenesis facilitating further microbial invasion of the
host. [14, 30-32]. Curli are fibrillar structures attached to the
bacterial outer membrane at one end. They can be up to several
micrometers long and 3 to 4 nm wide. Curli tend to aggregate
laterally by forming clusters up to 60 nm in diameter [33]. Curli
fibrils are highly resistant to denaturing agents and proteinases
but can be depolymerized after the short-term treatment with
concentrated formic acid [10, 11, 34]. The data from circular
dichroism spectroscopy indicate that the secondary structure
of curlifibrils is rich in B-sheets [11]; curli fibrils also interact with
amyloid-specific dyes, namely, congo red (CR) and thioflavin T
(TT) [11, 27]. This information makes it possible to classify curli
as amyloid fibrils [11].

Curli are necessary for bacterial biofilm formation and are
the major protein component of the extracellular matrix formed
along [33, 35]. It has been shown that curli genes are best
expressed at temperatures below 30 °C, low concentration of
nutrients, low osmolality and at the stationary growth phase, i.e.
under the conditions that E. coli and other Enterobacteriaceae
encounter outside the host. Under such conditions biofilm
formation can contribute to bacteria survival [33]. Curli mediate
the attachment of bacteria to various surfaces, including plant
cells [36, 37], stainless steel [38], glass and plastic [33], and can
considerably enhance microbial cell resistance to chlorine [38]
and mercuric compounds [39].

Curli assembly is a process strictly regulated by the
cell [14, 40Q]; it involves proteins encoded by at least two
operons: csgABC and ¢sgDEFG in E. coli [41]. Curli consist of
two homologous proteins, namely, CsgA and CsgB, the main
structural component of fibrils being CsgA protein [27]. Purified
CsgA forms amyloid fibrils in vitro in the absence of other
proteins. However, their B-strands are arranged into B-spirals
instead of B-sheets. In vivo the presence of CsgB is necessary
for CsgA amyloid fibril assembly [11, 27, 42]. CsgA secreted by
a csgB deletion mutant of E.coli can polymerize on the surface
of CsgB producing cells [11, 14, 27]. This phenomenon is called
interbacterial complementation and is widely used in mutation
studies aimed at detecting protein genes participating in curli
formation [11, 43]. Interbacterial complementation proves that
CsgB is a nucleating agent for CsgA polymerization [11].

The majority of CsgBs are localized on the bacterial surface,
which indicates that the supposition of CsgB nucleating
function is accurate [44]. CsgF provides the proper folding
and localization of CsgB nucleator protein and is probably a
chaperon-like protein [43]. CsgE periplasmatic protein is likely
to participate in CsgA secretion and inhibit CsgA polymerization
in vitro [45] due to the unmediated interaction between CsgE
and CsgA molecules [46]. Thus, CsgE can be seen as a CsgA-
specific chaperon. The evolving concept of the nucleation
properties exhibited by microbial cell surface proteins in the
course of amyloid formation allowed some authors to consider
microbial-derived amyloid proteins as a real risk factor for
amyloidoses and Alzheimer’s disease development [47].



The majority of experiments on curli biogenesis and
functions were carried out on E.coli and Salmonella spp. Curli
homologues were discovered among the representatives of
Bacteroidetes, Firmicutes and Thermodesulfobacteria genera
by bioinformatic analysis [48]. CsgEFG operons were found
in the majority of the bacteria mentioned above with potential
CsgA and CsgB homologues, while CsgC and CsgD proteins
were often absent. In spite of the fact that many bioinformatic
assays are awaiting the experimental confirmation, there are
grounds to suppose that structures similar to curli can be more
widely spread in biofilm-forming bacteria than it was thought
before [49].

Adhesin P1 located on the cell surface of Streptococcus
mutans that causes dental caries is an amyloid protein
[60]. This adhesin induced a shift in the CR dye absorption
spectrum, green birefringence in the CR stained sample and
a specific TT fluorescence. Using microscopic methods, fibrils
were detected in the sample of this adhesin; this, coupled
with spectrophotometric assay results, confirmed its amyloid
nature [50]. The obtained data indicate that P1 is not the only
protein of S. mutans cell surface capable of forming amyloids,
because the colonies of the bacteria deprived of this adhesin
still induced green birefringence after CR staining [50].

Mycobacterium tuberculosis pili are another example
of how amyloids of microbial extracellular matrix can
possibly contribute to pathology. This microorganism
causes tuberculosis that leads to 3 million deaths every year
worldwide [2]. Pili on gram-positive M. tuberculosis surfaces
are not soluble in the chloroform/methanol mix (2:1) and in
the sodium dodecyl sulfate-containing buffer (SDS); they
also interact with amyloid-specific CR dye, which suggests
their amyloid nature [2]. Pilus protein deletion mutants of M.
tuberculosis exhibited reduced virulence [2]. The researchers
explain that pili are capable of binding to laminin, the extracellular
matrix protein, thus contributing to the firm adhesion of a
microorganism to host tissues. Thus, M.tuberculosis uses
these amyloid proteins to successfully colonize the host [2]. In
the serum of patients with tuberculosis, high titers of antibodies
interacting with M.tuberculosis pili are found. [2].

Other gram-negative microorganisms that can colonize
different human organs and tissues, such as coccCi
Staphylococcus aureus, cause various diseases, from minor
skin infections to bacteremia and sepsis. Many of these
diseases are associated with biofilm formation in the host [20].
Extracellular amyloid fibrils have been identified in S.aureus
biofilms. They consist of short peptides called phenol-soluble
modulins (PSM) [12].

S. aureus or S. epidermidis PSMs have many functions
[61-54]. It has been shown that in their fibrillar form PSMs
are necessary for S. aureus to provide biofim stability against
various dispersing (biofilm degrading) agents and physical
impact [12]. The authors of that work believe that the inhibition
of phenol-soluble modulins export is a promising research
area that can contribute to preventing diseases induced by
pathogenic staphylococci. The search for minor molecules —
amyloid polymerization inhibitors — is one of the ways that can
lead to the development of drugs for staphylococci elimination
on the stage of biofilm formation [49].

Bacillus subtilis pili are an important component of biofilm
extracellular matrix formed by the bacteria on hard surfaces
and at water—air interface [55]. This microorganism is not
pathogenic, however, it is widely spread and can be found in sail,
air, water and food. The main protein subunit of B. subtilis pili
is TasA protein [22, 56]. Fibrils formed by TasA in vitro are very
similar to B. subtilis pili morphologically [22]; at the same time
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they interact with amyloid-specific dyes such as CR and TT, are
rich in B-sheets, as suggested by CD-spectroscopy, and can
be depolymerized only after the incubation in the presence of
formic acid [22]. It should be noted that TasA was first identified
as a secreted protein and a protein of B. subtilis spore surfaces
with distinct antibacterial properties [57, 58]. Antibodies used
in the diagnosis of neurodegenerative diseases recognize both
metastable intermediates generated in the course of amyloid
fibril formation and TasA oligomers, which suggests a possible
structural similarity of these two oligomer types [22, 59, 60].
Antibodies used in the diagnosis of neurodegenerative
diseases in humans recognize TasA oligomers [22, 59, 60],
which suggests their immunological similarity.

Amyloids forming amphypathic membranes on microbial
cell surfaces

Hyphae, spores and fruiting bodies of many fungi are
covered with amphypathic (i.e., having both hydrophilic
and hydrophobic areas) rodlet layers that form a mosaic of
parallel fibrils 5 to 12 nm wide [18]. Those amphypathic layers
do not dissolve when boiled in the presence of 2 % SDS
and 1 M NaOH, and dissociate into monomers only when
treated with formic or trifluoroacetic acids [9]. The main and
probably the only component of fungal rodlet layers is class |
hydrophobins [61, 62]. The polymerization of hydrophobins is
most effective at interfaces with high surface tension, such as
liquid-air interface; agents reducing surface tension also reduce
the rate of hydrophobin polymerization in vitro [63].

Hydrophobins are a large family of low molecular weight
proteins (7-9 kDa) found in fungi [61]. This family got its name
due to being rich in hydrophobic amino acid residues [9].
Hydrophobin encoding genes are present in many fungi. Class
| hydrophobins are typical functional amyloids because they
have a role in spore and fruiting body formation; they are also
important for adhesion to the host cell surface and protection
against the host immune system [18, 64]. Thus, in the
infection caused by filamentous fungi Arthroderma benhamiae
(dermatophytes, i.e., surface mycosis pathogens in humans
and animals), hydrophobin HypA has a masking function and
protects the microorganism from the host immune system.
Deletion of the hydrophobin gene leads to a rapid wetting
of fungal filaments and conidia, which induces increased
activation of granulocytes, neutrophils and dendritic cells and
is accompanied by elevated titers of interleukins IL-6, -8, -10
and tumor necrosis factor TNF-a [65]. RodA hydrophobin, a
component of the rodlet layer that covers pathogen spores,
contributes to the development of the infection induced
by another filament fungus Aspergillus fumigatus that can
lead to invasive aspergillosis. In the experiments on animals
the spores of the mutant strain with deleted RodA or AlagA
mutant containing 60 % less hydrophobins, were susceptible
to macrophage phagocytosis [66].

Amyloids as a part of yeast cell walls: adhesins and
glucantranspherase Bgl2p

The development of systemic amyloidosis in mice injected with
Candida sp. lyophilized cells is well known, but is not widely
discussed [67]. The authors of that article emphasized that
amyloid depositions could occur in experimental animals as
a response to casein, albumin, bacteria or E. coli endotoxin
administration [68-71]; but after the injections had been
cancelled, amyloid depositions started to reduce gradually or
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disappeared. [72, 73]. Laboratory mice injected with Candida sp.
lyophilized cells died of systemic amyloidosis within 400 days
after the last injection [67]. Separate experiments showed that
injecting mice with Candida sp. intracellular matter did not
cause amyloidosis. The authors concluded that amyloidosis
development was stimulated by cell walls components [67].

Bioinformatic analysis of Saccharomyces cerevisiae
yeast proteome detected the abundance of amyloidogenic
proteins in cell walls [74]. Als proteins (from agglutinin-like
sequence) are the example of well described proteins of
yeast cell surfaces with amyloid properties [20, 21, 75]. In
Candida albicans genome eight ALS genes were detected,
each of them encoding the protein that consists of a signal
sequence necessary for the protein secretion, three tandem
immunoglobulin (Ig)-like domains, a T-domain rich in threonine,
a various humber of 36-amino-acid-long glycosylated tandem
repeats (TR), a highly glycosylated stem domain and a signal
sequence of glycosylphosphatidylinositol anchor attachment
protein that ensures protein covalent attachment to the cell
wall glucan [76]. Ig-like domain ensures binding to a substrate;
T-domain is necessary for proper folding of Ig-like domain and
secretion TR increases affinity of Ig-like region to ligands and
can promote yeast aggregation independent of Ig-like region.
Due to the presence of stem domain, active regions are at a
considerable distance from the stem wall [76].

In spite of the intense glycosylation, Als family proteins are
low soluble and form amyloid fibrils even at low concentrations
when purified [20]. The conformation of N-terminal regions
of Als1p (Ig-fragment) and Als5p (Ig-T-fragment) proteins in a
solution has been studied [76]. The obtained data indicated
that in both cases B-sheets were prevailing elements of a
secondary structure of the polypeptide of interest [76]. It was
also shown that Als5p, Als1p and Als3p had a highly conserved
potentially amyloidogenic region (PAR) in T-domain [20].

Interestingly, PARs were detected in amino acid
sequencies of both Als proteins and yeast adhesins of different
families [75]. Peptides containing those PARs formed fibrils
that interacted with amyloid-specific dyes, and according to
the CD-spectroscopy assay had a secondary structure rich in
B-sheets [75]. Amyloid formation is likely to be a very common
phenomenon [75].

The opportunistic yeast pathogen C. albicans forms biofilms
facilitating colonization of host tissues and making C. albicans
cells extremely resistant to antimicrobial treatment [77, 78].
An important role in the pathogenesis and biofilm formation
is played by Als-adhesins described above, along with many
other adhesins produced by C. albicans [78, 79]. Some Als-

)

adhesins form amyloid structures [20, 21, 75], which probably
contributes to C. albicans cell autoaggregation and C. albicans
interaction with extracellular matrix proteins (fibronectin, laminin,
type IV collagen) and other mammalian peptide ligands, cells
of other yeast species and bacterial cells [76, 78]. The ability
of Candida sp. to attach to the mucosal surfaces of different
organs and to synthetic materials surfaces by means of surface
adhesins is an important factor in the pathogenicity of these
fungi that contributes to the development of the infection. This
property is most conspicuous of C. albicans yeast [80, 81].

Glucantransferase Bgl2p is another protein of yeast cell
wall (CW) exhibiting amyloid properties. It is a small (31.5-
34 kDa depending on the yeast species) conserved major
noncovalently bound protein. Its presence in the CW has
been detected in many yeast species, such as S. cerevisiae,
C. albicans, A. fumigatus [82-84]. Bgl2p of S. cerevisiae is
highly homologous to Bgl2p of C. albicans. Antibodies against
S. cerevisiae Bgl2p react with C. albicans Bgl2p [82, 85]. Bgl2p
of the CW is resistant to trypsin and proteinase K and cannot be
extracted from it when treated with 1% SDS solution in water at
37 °C, in contrast to other noncovalently bound polysaccharide
backbone proteins of the CW [86].

Bgl2p extracted from S. cerevisiae CW can form structures
with fibrillar morphology [86, 87] clearly seen in microscopic
assays (see the figure below). Bgl2p protein extracted from
the CW induced specific fluorescence of TT and exhibited a
circular dichroism spectrum characteristic of a protein rich in
B-structure [86, 88], which also indicated the amyloid nature of
the structures formed by Bgl2p. The ability of Bgl2p to fibrilize at
different pH values was also studied using isolated proteins and
synthetic peptides with potential amyloidogenic determinants
predicted in the Bgl2p sequence by a bioinformatic assay
[87]. It was shown that Bgl2p extracted from the cell wall
formed fibrils at neutral and mildly acidic pH values, while in
mildly alkaline media it lost its ability to form amyloid fibrils
[87]. The mechanism of Bgl2p formation in the cell wall and
its physiological role in the functioning of yeast are yet to be
discerned [89].

Presumably, Bgl2p has a crucial role in pathogenic yeast
virulence, since BGL2 gene deletion reduces the infecting
ability of those microorganisms [82]. Jang et al. found that
C. albicans Bgl2p also functions as an adhesin and ensures
cell attachment to the immobilized saliva components [85].
It was shown that antibodies to C. albicans Bgl2p are a
diagnostic biomarker of systemic candidiasis, and their high
levels correlate with the reduced death probability, which may
be related to the protective function of these antibodies [90].

Photomicrograph of glucantransferase Bgl2p samples extracted from Saccharomyces cerevisiae yeast cells. (A) — electronic microscopy. Negative staining[86]. (B) —

fluorescent microscopy. Staining with antibodies against Bgl2p [87]
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CONCLUSIONS

When describing amyloid proteins of microbial surfaces, we did
not review the articles dedicated to such amyloids as chaplins,
microcins and harpins, because their role in human and animal
pathogenesis has not yet been identified or studied. Still, the
studies of the amyloid structures and formation mechanisms,
which are actively carried out in a number of big research
centers and laboratories in Russia and abroad, hold promise
for important discoveries in this field. We think it necessary
to pay close attention to the analysis of a possible role of
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