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Concurrent use of electrophysiological signals of various types, such as obtained from electroencephalogram (EEG),
electromyogram (EMG), electrooculogram (EOG), and others, increases the effectiveness of systems for external device control,
namely, neural prostheses, exoskeletons, robotic wheelchairs and teleoperated robots. This article presents the results of
the first tests of a multifunctional neurodevice capable of detecting EEG, EMG and EOG signals simultaneously (with EOG
signals, photoplethysmogram, SpO2 and temperature modules of the neurodevice were used). Measurement results were then
compared to the data obtained from KARDI3 device (Medical Computer Systems, Russia) and Fluke 17b multimeter with a
plug-in thermistor (Fluke Corporation, USA). The informative value and accuracy of both datasets were comparable. We also
studied the effectiveness of EEG and EMG signal hybridization on the basis of the neurodevice of interest; it allowed for an
increase of classification accuracy in all subjects by an average of 12.5 % up to the mean of 86.8 % (from 75 to 97 %).
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Applied biorobotics improves the quality of life in patients
with neurological disorders and traumas. Neuroprostheses,
exoskeletons, robotic wheelchairs and telecontrol robots
contribute to rehabilitation of patients, substitute for lost
functions and enhance physical abilities of healthy people.

Choosing the right control scheme is very important for the
development of such devices. It must ensure the accuracy,
stability and safety of the device performance, given that
the device will be used continuously. The majority of existing
solutions are based on recording human body biopotentials
using electromyography (EMG), electroencephalography
(EEG), electrooculography (EOG) and electrocardiography
(ECG) [1-6].

Robotic wheelchairs, prostheses and exoskeletons are
good examples of the effectiveness of EMG-based schemes
[7-9]. However, EMG alone is not enough if an individual
who had a stroke or a spinal cord injury cannot generate a
muscle signal of the required intensity. In such cases we turn
to brain-computer interfaces (BCls) that transform signals from
damaged brain areas into commands for external devices. One
of the recent works [10] has demonstrated a high effectiveness
of a BCI for neuroprosthesis control tested by a tetraplegic
patient with intact sensory and cognitive functions.

Among various methods of brain signals recording, EEG
is the most convenient due to its availability, safety, cost-
effectiveness and portability. The brain cortex consists of
multiple areas of functional specialization in which waves of
different frequency are observed [11]. The EEG spectrum is
unique for every individual and changes constantly depending
on a person’s physiological condition and the activity performed,
as long-term measurements have proved [12] By decoding
EEG signals, we can discriminate between limb movements
quite accurately. For example, the algorithm proposed for the
reconstruction of the trajectory of finger joint angles during
reach to grasp movements ensured 76 % accuracy of EEG
signal [13]. Another work showed that it was possible to
correctly identify one out of five actual or imaginary movements
of the wrist and fingers with 65-71 % accuracy [14].

For better classification accuracy,a large number of EEG
channels is thought to be necessary. However, Yang et al. [15]
were able to remove irrelevant noise and improve the EEG
signal classification technique that can be applied to a neural
network or used for robotic device control. EEG was recorded
with only 6 channels out of 32; still, the classification accuracy
reached 86 % in some motor tasks. However, EEG-based
BCls have certain drawbacks resulting from incorrect electrode
placement, shifting of electrodes, noises, artifacts, imperfect
algorithms of filtration and signal processing.

Some researchers suggested that EMG and EEG methods
should be fused [16-18]. For example, in case of paresis or
limb loss, EEG signals can be used to compensate for weak
EMG signals, ensuring that a prosthesis or exoskeleton is
moved by mental effort. If EMG signals are of normal intensity,
EEG signals can help reduce the impact of tremor, fatigue or
artifacts.

Leeb et al. [19] proposed a hybrid EEG-EMG-based control
system; it was tested on 6 healthy individuals. The subjects
moved their left or right arm for 5 seconds (there were 60 trials
in total). Brain activity was recorded by 16 sensors placed in
accordance with the international 10-20 system. Muscular
activity was recorded over left and right forearm flexors and
extensors. The obtained EMG signals were rectified and
averaged (0.3 s) to get the envelopes. The data from two
classifiers were fused together to get one control signal.
The hybrid system showed high classification accuracy in
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all subjects. Despite the fact that EMG signals were quite
informative (classification accuracy was 83 % in average), the
hybrid approach was more effective (classification accuracy
was 91 %), especially in case of increasing muscle fatigue.

Xie et al. also developed a hybrid EEG-EMG-based BCI
(visualization of movement intention) [20]. Their study enrolled
10 post stroke patients with non-severe hemiparesis, 10
patients with peripheral nerve injury and 10 healthy individuals.
All patients were between 20 and 58 years of age. For
calibration, subjects were asked to lie on the bed and perform
knee flexion and extension tasks. The sensor measured the
angle and the force of movements; the obtained data were
later used as target levels. Then EEG/EMG sensors were
attached, and the experiment was carried out. The aim of the
experiment was to establish the correlation between EEG/EMG
signals and leg movements and to measure the accuracy of
potential control commands for the external device. First, EEG
data were processed followed by EMG data processing; in the
third experiment the hybrid approach was applied. The results
showed that the hybrid approach led to increased classification
accuracy in all groups of subjects, compared to single modality
approach. In healthy individuals, classification accuracy was
98 %, in post stroke patients — 84 %, for patients with
peripheral nerve injury — 85 %.

Kiguchi et al. [21] carried out a study of a hybrid EEG-EMG
system for controlling arm movements using SUEFUL-7 robotic
device, and assessed its effectiveness [22]. The robot was
equipped with a video camera and could detect arm position by
rotational angle and force sensors. A 16-channel EMG interface
for recording signals coming from arms and shoulders was
used as a control system. The experiment enrolled four 23-year-
old healthy individuals. Some of them wore an exoskeleton and
a device for EEG recording and response monitoring. In the
first experiment, the subjects performed arm flexion/extension
tasks, and the robot did the opposite impeding the movement.
In the second experiment, one full and two empty cups were
put on the table. When the subject grasped the empty cup,
the robot used the assistance algorithm that estimated the
position of empty cups using the video camera, and randomly
selected one of them; after that, the robot assisted the subject
in pouring the liquid. The accuracy of choice was assessed
using EEG and EMG signals. If the subject did not resist, the
robot inferred that the target had been chosen correctly. In that
experiment, the flexibility of the robot and its ability to correctly
interpret the intentions of the subject were tested. The results
showed the increased accuracy of interpretation of human
actions by the robot.

BCI performance can be improved by oculography data
recorded parallel to EEG. A group of scientists designed a
hybrid EEG-EOG-based BCI to enhance the reliability of hand
exoskeleton for continuous grasping movements [23]. EEG
signals were recorded at 5 EEG sites in accordance with the
international 10-20 system. The experiment consisted of two
parts. In the first part, the subjects controlled the exoskeleton
through EEG signals only; they made grasping movements
when the visual indicator appeared (green for the movement
onset, red for rest). The robotic hand opened automatically if
the commands issued by the operator’s brain were not intense
enough to get over a preset threshold. In the second part of
the experiment, EOG signals were used as a switch. When the
subject looked to the left or to the right, the exoskeleton hand
opened regardless of EEG signals. The hybrid model increased
system safety. When only EEG signals were used, the motion
of the robotic hand exceeded 25 % of a full hand closing in half
of subjects at rest. The hybrid system showed the increase in

BULLETIN OF RSMU | 2, 2016 | VESTNIKRGMU.RU



ARTICLE | NEUROINTERFACES

the threshold value in 10.4 % of subjects, with maximal grasp
being less than 28 % of a full hand closing (in a single modality
system it was 60 %) .

Cardiovascular system performance is usually assessed
by monitoring arterial blood pressure and heart rate (HR); it
correlates to brain activity, including that, during motor tasks
[24-26]. Studies of the effect of changing mental activity
on heart activity assessed by EEG show that hybrid EEG-
ECG systems are a promising practical tool [27-29]. In the
experiment involving 6 healthy right-handed men (mean age
was 28 years), who imagined movements of their left leg or
left arm, researchers assessed classification accuracy of EEG
signals and ECG signals separately; then a fused EEG-ECG
recording was processed [29]. For every subject, 180 sessions
were held (60 sessions for each assessment method). They
consisted of three parts; the subject rested for the first 6
seconds (while, data from previous sessions were processed);
then the subject was presented with an indicator that randomly
indicated the action that the subject had to perform (arm or
leg movement visualization or rest); that part of the experiment
lasted for 6 s; finally, there was a pause of unfixed length (up to
several seconds). Three EEG channels were recorded (C3, C4,
Cz, according to the international 10-20 system) along with
ECG, R-R intervals were calculated as a difference between
QRS complexes, which show heart rate, filtered at 5-10 Hz
frequencies. The obtained data allowed for a few interesting
conclusions. First, active visualization of limb movements
induced heart rate change. Second, ECG classification
accuracy was very high in almost all subjects: in many subjects
the use of ECG modality was more effective than EEG. Third,
the hybrid approach increased classification accuracy in almost
all subjects, especially in those, whose results in a single
modality mode were low.

Thus, a hybrid approach to the implementation of systems
for external device control is very promising. Considering how
fast these technologies are developing, we believe that such
high-accuracy neurodevices will appear in the market in the
nearest future. The laboratory of Neurobiology and Medical
Physics of the Institute of Chemistry and Biology of Immanuel
Kant Baltic Federal University is working on a multifunctional
neurodevice capable of detecting different electrophysiological
signals simultaneously (EEG, EMG, EOG supported by the use
of photoplethysmogram, SpO2 and temperature modules),
ensuring a biological feedback and transmitting the processed
data to exoskeletons and robotic devices in real time. This
article presents the results of the first tests of the prototype
model of such a neurodevice and assesses the possibility of
fused EEG and EMG signal recording based on it.

METHODS

We have implemented a prototype model of electrophysiological
and biometrical recorder capable of converting biosignals into
commands for an electromechanical device; we have also
tested our model in a two-stage experiment. At the first stage,
the neurodevice was used to study the motor activity of the
subjects by recording electrophysiological signals. For the
unbiased assessment of the device performance, the resulting
data were compared to the data obtained with analytical devices
that had proved to be reliable and are now successfully applied
in medical practice. At that stage, 2 healthy men participated
in the experiment, (22 and 23 years of age, height of 175 and
177 cm, respectively, weight of 70 and 75 kg). At the second
stage, a possibility of fused EEG and EMG recording using the
neurodevice was assessed. The experiment enrolled 10 healthy

BULLETIN OF RSMU | 2, 2016 | VESTNIKRGMU.RU

right-handed men aged 22-29 years (mean age was 25 years).

Brain electrical activity was measured by encephalogram
via scalp leads; bioelectrical potentials in skeletal muscles were
measured by electromyography; bioelectrical potentials related
to eye ball movements were measured by oculography; body
temperature was measured by thermometry; pulse rate was
measured using photoplethysmography. The obtained data
were recorded digitally and graphically.

For EEG recording, silver cup electrodes (Ag/AgCl) were
used; EEG caps were used to place the electrodes on subjects’
heads. For EMG and EOG recording, silver plate electrodes
were used. In the experiments aimed at the assessment of
physiological signal parameters, the most common artifacts
were detected, such as artifacts resulting from bad electrode
attachment or electrical noise caused by subject’s movements,
artifacts caused by upper body muscle tension and forehead
wrinkling, muscle potentials, skin potentials, eye blinking, pulse
waves.

To study motor activity, the subjects were asked to do
physical exercises, including bending and turning the head to
the right and left, tilting it down and back, with the prototype
model of the neurodevice attached to it. Before the experiment,
we had written a program for real-time visual representation of
Euler angles rotation.

Results of EEG, EMG and EOG signal recording and pulse
rate data were compared to those obtained with KARDI3 device
(Medical Computer Systems, Russia), intended for recording
and analyzing ECG, EOG, EEG and some other parameters.
Measurements were first done with KARDI3, then with the
neurodevice of interest. The subject remained in the same
position throughout the experiment. The electrodes attached
to the body were not moved when switching from KARDI3 to
the neurodevice prototype model. To reduce the amount of
artifacts, electrode cables were bundled and twisted.

During EEG recording, we focused on alpha-rhythm,
which is normally the most stable electrophysiological signal.
To record the alpha rhythm, a bipolar lead system was used.
Electrodes were attached to the back of the subject’s neck,
reference electrodes were attached to ear lobes. To achieve the
maximal relaxation of neck and head muscles and to reduce
myographic artifacts, the subject was seated in the reclined
position. In total, 100 trials were conducted. For both the
neurodevice prototype model and KARDI3, the same recording
mode was used, with a 30 Hz low-pass filter, a 0.5 Hz high-
pass filter, a 50 Hz band-reject filter, speed of 30 mm/s (X-axis),
sensitivity of 50 mcV/mm (Y-axis).

EOG signals were recorded during the eye movement task.
The total number of trials was 100. The subjects were asked to
do the following exercises: look at the yellow dot in the center
of the board — then up (red circle) — center (yellow dot) — down
(blue circle) — center (yellow dot) — left (red cross) — center (yellow
dot) — right (blue cross) — center (yellow dot). The subject was
seated in front of the board with graphic symbols. To register
the signal, a bipolar montage scheme was used. Electrodes
were attached to the temples, close to the right eye and on
the forehead. For both the neurodevice prototype model and
KARDI3, the same recording mode was used, with a 40 Hz
low-pass filter, a 1 Hz high-pass filter, a 50 Hz band-reject filter,
speed of 15 mm/s (X-axis), sensitivity of 50 mcV/mm (Y-axis).

To record EMG signals during thigh muscles contraction,
the subject was asked to move the right leg forward for a step-
like movement. There were 100 trials in total. The left leg did
not move, the subject did not lean on the right leg on which
electrodes were placed. The subject was standing, using
his left leg and right arm as points of support; his right leg



with electrodes on it was relaxed. Electrodes were placed 5
cm apart from each other. To record the signal, a referential
montage scheme was used. Electrodes were placed over the
femoral muscle using adhesive rings. For both the neurodevice
prototype model and KARDI3, the same recording mode was
used, with a 100 Hz low-pass filter, a 1 Hz high-pass filter, a
50 Hz band-reject filter, speed of 120 mm/s (X-axis), sensitivity
of 10 mcV/mm (Y-axis).

To record EEG, EMG and EOG signals using our
neurodevice prototype, neurodevice, we have developed
original software. To record EEG, EMG and EOG by KARDIS,
Neurocortex software by Neurobotics, Russia was used.

To measure the pulse rate the subject was seated. For
ECG recording (100 trials in total), KARDI3 electrodes were
attached to the wrists by adhesive rings. A referential montage
scheme was used. Then, the subject put his finger on the
photoplethysmogram module of the neurodevice, the output
being the pulse-related signal. Pulse measurement was
supported by pulse oximetry (SpO2). The following recording
mode was chosen for both the neurodevice and KARDIS:
a 0.1 Hz low-pass filter, a 50 Hz high-pass filter, a 50 Hz
band-reject filter, speed of 60 mm/s (X-axis), sensitivity of 20
mcV/mm (Y-axis). To process data obtained with KARDIS,
Neocortex software was used; to process data obtained with
the neurodevice, Heart Rate Monitor Demo software was used
(Silicon Labs, USA).

To compare temperature measurement accuracy, Fluke 17b
multimeter with a plug-in thermistor was used. The temperature
sensor was attached to the subject’s forehead by the adhesive
ring. The total number of trials was 136. Temperature data were
transmitted to the PC via Blootooth protocol every second.

At the second stage of the experiment, a possibility of EEG
and EMG fused recording by the neurodevice of interest was
studied to ensure its good performance in a complex with
robotic devices, such as an exoskeleton.

The subjects were instructed to imagine their left leg
movements and then to flex and extend the thigh (10 sessions
for every participant). Classification accuracy was first assessed
for EMG signals only and then for a hybrid EMG-EEG system.

Physiological parameters were continuously monitored
during motor tasks and idle periods (5 s long). Fisher linear
discriminant analysis was used for classification.

STUDY RESULTS

We studied motor activity involved in performing such tasks
as turning and bending the head to the right or left, tilting it
down and back. The results demonstrate high accuracy and
precision of the data obtained with the motor sensor of the
studied neurodevice. The diagram in fig. 1 shows Euler angles
rotation (X-axis represents time, Y-axis represents angle): 1)
pitch is rotation around the transverse axis (green ling); 2) roll is
rotation around the longitudinal axis (blue line); 3) yaw is rotation
around the vertical axis (red line).

EEG data obtained with the studied neurodevice showed
the same artifacts as EEG data obtained with KARDI3, and
their amounts were comparable. It indicates that the studied
neurodevice could compete with similar tools for EEG recording.
Muscular activity artifacts were associated with small neck and
head movements resulting from subject’s fatigue. Quite a few
encephalograms showed traces of cardiogram artifacts, which
is possibly related to the individual specifics of the subject’s
cardiovascular system and the placement of electrodes over
subcutaneous blood arteries.
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EOG data obtained with the neurodevice were comparable
to the data obtained with KARDI3 in their informative value; in
case of our neurodevice, the amount of artifacts was lower. The
most common artifact was eye blinking, which appeared on
EOG as a sharp amplitude increase; artifacts of mimic muscles
that accompanied the subject’s growing fatigue were also
present.

During EMG signal quality assessment, it was found that
the data obtained with our neurodevuce were as informative
as the data obtained with KARDI3. No artifacts were detected.

The results of temperature measurements obtained with
the neurodevice were comparable to the data from Fluke 17b
reference device. In average, temperature variance was 0.3%.

Pulse signal was obtained from the electrocardiogram
recorded with KARDI3 and the neurodevice
photoplethysmogram module. ECG R-R interval data from
KARDI3 showed the same pulse values as data from the
photoplethysmogram module. The mean HR in the first subject
was 78 and 77 beats per minute (measured with KARDI3 and
the neurodevice, respectively). The mean HR in the second
subject was 72 and 71 beats per minute (measured with
KARDI3 and the neurodevice, respectively). No artifacts that
could affect the result were observed (fig. 2).

It is worth mentioning that the module for the assessment
of cardiovascular system performance estimates blood oxygen
saturation, thus providing some valuable data that can be used
for exoskeleton control.

Our study of EEG and MG signal hybridization yielded
results that support the idea electrophysiological signal fusion
approach. The experiment showed that mean classification
accuracy of EMG signals was 74.3 %. EMG-EEG hybridization
led to the increased classification accuracy by an average of
12.5 % with a mean of 86.8 % (75-97 %) in all subjects. The
results are presented in the table below.

DISCUSSION

Itis obvious that development of a high-accuracy multifunctional
neurodevice that allows for continuous recording of
physiological signals and transmits data to the external device
(exoskeleton) can yield very inspiring results. We have carried
out a truly multidisciplinary study, at the first stage of which a
prototype model of such a neurodevice was created and tested.
It was demonstrated that the signals obtained with our device
were identical to those obtained with reliable analytical tools.

During some motor activity measurement procedures,
gyroscope drift was observed associated with a changing
magnetic field generated by the accumulator battery. It was

Fig. 1. Euler angles rotation during head exercises. (A) Head is bent to the left. (B)
Head is back to the initial position (the yaw and roll angles change, the pitch angle
remains unchanged, gyroscope returns to the initial position)
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the result of the relatively weak attachment of the accumulator
to the model; rigid fixation of the accumulator helped to solve
the issue. With weak attachment of the model to the subject’s
body, a simultaneous change of two angles was observed
occasionally when the subject was performing a task. It can be
explained by the “multilayered” scheme used in the experiment:
gyroscope components were placed on the motor module, and
the motor module was placed on the subject’s head. Steady
movements of the subject’s head also made their contribution.
We will consider it in the fabrication of the experimental sample
and will use software and hardware automatic calibration of
the device position with respect to the subject’s position The
main motor activity parameters measured by the experimental
sample that we plan to fabricate will be linear acceleration of
the accelerometer, angular acceleration of the gyroscope and
a magnetic field vector of a magnetometer. EMG and EOG
muscular artifacts will be removed using additional band-

Fig. 2. Studying heart activity. (A) Electrode placement and ECG data obtained
with KARDI3. (B) Electrode placement for photoplethysmogram and SpO2
analysis using the prototype model of the neurodevice

reject filters or special software. Cardiogram artifacts can
be removed by changing electrode attachment mode from
stationary to dynamic, with a possibility to shift electrodes by
no less than 10 mm. Thus, the electrode can be moved if it has
been placed over an artery. Besides, improving accessories for
electrode attachment will also reduce the amount of artifacts.

The results of EEG-EMG fusion experiment showed the
considerable advantage of hybrid BCls over single-modality
BCls and confirmed the feasibility of simultaneous recording
of various physiological signals [19-21, 23, 29]. Due to the
increased classification accuracy and flexibility, a hybrid system
is more reliable and exhibits higher performance. The obtained
results lead us to conclude that fused EEG-EMG recording
improves the interpretation of intended and actual physical
activity. EEG signals unrelated to muscular activity are an
additional identification tool that can be used in robotics. We
speculate that improvements to the system and simultaneous
use of various physiological signals will result in almost 100 %
classification accuracy.

By now, very few works describing such experiments have
been published. All of them are non-representative with respect
to the number of participants. To increase signal classification
accuracy and safety of robotic devices, further research is
necessary. Still, certain difficulties remain. First, electrode
shifting is a problem, because the correct placement of
electrodes is what defines intensity, quality and reproducibility
of signals. With respect to that, non-contact technologies can
be a solution. Second, complex movements involving several
muscles (hand, forearm, shoulder girdle and trunk muscles) are
generated by a large number of motor cortex areas, and the
size of each area is unique for every person, which impedes
reconstruction of complex movements. To solve this problem,
new technologies capable of isolating target movements
from unrelated ones are necessary. Some solutions have
been proposed so far, including invasive interfaces based on
electrocorticography [30, 31].

CONCLUSIONS

The tests of the neurodevice prototype capable of simultaneous
detection of different electrophysiological signals confirmed the
feasibility of hybrid approach to the development of systems for
external device control. Fusion of several modalities or switching
from one to another to select the one that best interprets
human intention increases signal classification accuracy and
can possibly improve robotic device performance. Further
research is necessary with a larger number of participants
involved, including those with different pathologies.

EMG and EEG signal classification accuracy in single modality and hybrid approaches, %

Subject EMG EMG + EEG Dynamics
1 84.0 93.0 +9.0
2 72.0 84.0 +12.0
3 77.0 88.0 +11.0
4 92.0 97.0 +5.0
5 70.0 93.0 +23.0
6 63.0 79.0 +16.0
7 69.0 81.0 +12.0
8 75.0 90.0 +15.0
9 61.0 75.0 +14.0
10 80.0 88.0 +8.0
Mean 74.3 86.8 +15.0
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