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STABILITY OF SPONTANEOUS ELECTRICALACTIVITY
OF NEURAL NETWORKS IN VITRO
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Using brain-computer interfaces, one can both read data from and transmit them to the brain. However, these data are only
a set of sensor system signals and not the knowledge or experience. Neural networks are a basis for cognitive activity and
can simulate processes similar to learning in vitro. In this work we tested the hypothesis of a neural network’s ability to learn
by detecting deviations from its stereotypical activity and modifying them in a way that allows it to get rid of external electrical
stimulation. Spontaneous activity of several neuronal cultures in vitro was analyzed by clustering method. The results showed
that activity of untrained cultures remained stable for a long time, and external electrical stimulation led to switching between
various spontaneous activity patterns.

Keywords: neuronal cultures, neural networks, learing, spontaneous activity, cluster analysis, bursting activity analysis
Funding: this work was supported by the Russian Science Foundation, grant no. 15-11-30014.

><] Correspondence should be addressed: llya Sokolov
ul. Chertanovskaya, d. 49, k. 2, kv. 121, Moscow, Russia, 117534, ilsersokolov@gmail.com

Received: 01.04.2016 Accepted: 07.04.2016

YC'I‘"OW-IMBOCTb CI'IPHTAHHO“ 3AEKTPUYECKOW AKTUBHOCTU
HEUPOHHbBIX CETEU IN VITRO

/. C. Cokonos™?®, M. K. TatapuHues's, P. 0. XacaHos'*, A. M. Aauesa’, E. KO. Makaperko?, M. C. bypues'**°

"O1oen HempoHayk, KypdaTtosckuin LieHTp HBVIKC-TexHonorui,
HaumoHanbHbIM nccnegoBaTenbekm LIEHTP «KypyaToBCKUIA MHCTUTYT», MockBa

2Kadbenpa counsmonorim, Megmko-o1onornieckimin hakynsTer,
Poccumnckinin HaumoHanbHbIN MCCNeaoBaTensbCKUN MeanLMHCKUN yHBepcuTeT nmenn H. W. Minporosa, Mockea

3 Kadbenpa HBVIK-TexHonoruin, hakynsteT HaHo-, B10-, MHEOPMALIMOHHBIX M KOMHUTUBHBIX TEXHONOM A,
MOCKOBCKUI (PUSUKO-TEXHUHECKNN MHCTUTYT (FOCYAapCTBEHHbIN YHUBEPCUTET), LonronpyaHsin

4 Kahbenpa hunsnonormm YenoBeka 1 >KMBOTHbIX, BUONOrMHECKMA (haKymbTET,
MOCKOBCKMI rocy0apCTBEHHbIN YHMBEPCUTET UMeHu M. B. JTomoHocoBa, MockBa

5 HaupnoHasnbHbIn nccneaoBatensCkuin saepHbln yHnBepcuteT «MVIDK», Mocksa

C MOMOLLBIO HENPO-KOMMBIOTEPHBIX MHTEPENCOB MOXXHO Kak CHMTbIBATb MHOPMaUMo ¢ MO3ra, Tak 1 nepeaaBaTb ee
B Moar. OfHako aTa MHopMaLWsa — CuUrHabl CEHCOPHBIX CUCTEM, a He 3HaHWe 1 OMbIT. HeMpOHHbIE CETU, MPeaCTaBnsAto-
e cobor OCHOBY KOMHUTUBHOWM OEATENbHOCTW, CMOCODOHbI in Vitro BOCMPOM3BOAWTL MPOLECCHI, aHaIOrNYHble 0BYHEHWIO.
B pabote npoeepeHa mnoTesa o0 TOM, YTO HEMPOHHAs CETb PeannayeT 0bydeHre NyTeM OOHaAPY>KEHNSA OTKITOHEHWSI OT CBOEN
CTEPEOTUMHON aKTUBHOCTU U MOAV(MKaLMM e€ TakM 06pa3oM, HTOObI 36aBUTLCS OT BHELLHEN 3NEKTPUHECKON CTUMYMSALIN.
CnoHTaHHas aKTUBHOCTb HECKOSBKNX HEMPOHaNBbHBIX KYMBTYP in Vitro Gbiia npoaHanmM3upoBaHa METOAOM KiacTepuaaumi.
PeaynbtaTthl moka3an, YTo akTUBHOCTb HEOOYHYEHHbIX KYSBTYp OCTAETCSt CTabUIbHOM Ha MPOTSYKEHWN AINTENBHONO BPEMEHM,
a BHELUHSAS aneKTpuyieckast CTUMYNSUMS MPUBOOUT K MEPEKITIOHEHNIO MEXKAY NaTTepHaMU CMOHTaHHOW aKTUBHOCTU.

KntoueBble cnoBa: HelMpoHabHbIE KyTBTYPbl, HEMPOHHBIE CETU, 0Oy4eHMe, CIOHTaHHAA aKTUBHOCTb, KTACTEPHbI aHang,
aHanM3 naveyHon aKTUBHOCTU

®duHaHcupoBaHue: paboTa BbiNosHeHa Npv Nofaaep»ke Poccuinckoro Hay4Horo cdhoHaa, rpaHT Ne 15-11-30014.

><] Ans koppecnonaeHuun: Vnba Cepreesuy Cokonos
117534, r. Mockga, yn. HYeptaHoBckas 4. 49, K. 2, kB. 121; ilsersokolov@gmail.com

Cratbst noctynuna: 01.04.2016 Ctatba npuHaTta K nevartu: 07.04.2016

42| BULLETIN OF RSMU | 2, 2016 | VESTNIKRGMU.RU



CTATbS! | HENPOBUOJIOTUSI

In medicine, brain-computer interfaces are used for the
development of neuroprostheses comparable to healthy
organs in their responsiveness to user's mental commands
[1-3]. Data can also be transmitted in the reverse direction,
from the computer to the brain; for example, lost sensory
functions, such as auditory [4] and visual [5], can be recovered
using electrical stimulation. However, what’s more challenging
for a researcher is transmission of information as such, i.e.,
knowledge and experience. It has been shown that using
multi-input/multi-output non-linear dynamic model allows for
transmitting a certain spatiotemporal pattern detected in the
hippocampus of one rat to the hippocampus of another rat,
which leads to the statistically reliable alterations in the behavior
of the second animal [6].

It is known that neuronal networks that form a basis for
cognitive activity do not have a distinct location in brain
structures, but are distributed throughout them [7, 8]. From that,
a need to reprogram neuronal networks ensues. Publications
on the patterns patterns of neuronal network spontaneous
activity in vitro and on the methods of its external modification
[9-13] prove that networks of dissociated primary neuronal
cultures of cortical and hippocampal cells on multi-electrode
arrays (MEAs) can control external stimulation by changing their
activity on the selected experimental electrode. Such neuronal
network learning was first demonstrated by Shahaf and Marom
[14] and was successfully reproduced by other researchers
thereafter [15-18].

As the network is gradually developing from the dissociated
neuronal culture, it starts to exhibit spontaneous bioelectrical
activity recorded by array electrodes. Thus, in the absence of
external stimulation in the first days of culture growth, only single
action potentials are registered, but after a while they cluster
into bursts [19]. In this work we hypothesize that spontaneous
burst activity comes down to a small number of stereotypical
patterns, and cluster analysis can help identify one or several
dominating patterns. Since the external stimulation breaks the
existing activation sequence, the network changes its activity
pattern to switch off stimulation and go back to the typical
pattern. Then, cluster analysis performed after the stimulation
(training) can detect the resumption of the initial activity pattern.

METHODS
Cell cultures

Primary cell culture was prepared from the hippocampal tissue
of newborn rats of C57BL/6 breed. Experimental animals
used in the study were managed according to the guidelines
specified in Order no. 267 of the Ministry of the Russian
Federation, dated June 19, 2003, “On the approval of rules
for good laboratory practice”. The experiment was approved
by the local Ethics Committee for Biomedical Research of the
National Research Center “Kurchatov Institute” (protocol no. 1,
dated July 9, 2015).

Cells were cultured on 60-channel multi-electrode arrays
B60StimMEA200/30-ITO  (Multichannel  Systems, Germany).
Prior to the experiment, plates were coated with poly-L-lysine
for better cell adhesion. The initial culture density was 300,000
cells per mm?3. Their dissociation was achieved by using
0.25 % trypsin (Invitrogen 25200-056, USA). Neuronal viability
was maintained in  NeurobasalTM culture medium (Invitrogen
21103-049) in the complex with the biocactive additive B27
(Invitrogen 17504-044), glutamin (Invitrogen 25030-024) and
penicillin-streptomycin  (Life Technologies 15140122, USA)
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in GALAXY 170S incubator (New Brunswick Scientific, USA)
under stable conditions: temperature of 37 °C, humidity of
100 % and 5 % CO, air concentration. Glial cell growth was not
inhibited, because glial cells were necessary to ensure long-
term culture viability in vitro. Half of the medium volume was
replaced every three days.

Bioelectrical cell activity was recorded with MEA1060-
Up-BC-Standard system (Multichannel Systems). For data
acquisition, the bundled software was used.

Dynamics of spontaneous burst activity were observed in
two cultures. Recording was performed from the 4™ day in vitro
(DIV) until culture death. For further processing, we used data
obtained in the interval between the onset and offset of burst
activity. For training, one 24-DIV culture was used.

Protocol of neuronal culture training in vitro

1) 1-hour background recording of culture bioelectrical
activity .

2) Stimulation by single bipolar rectangular pulses of + 300
mV on each electrode (one at a time) to select the electrode
that evoked the most intense culture response.

3) 5 stimulation cycles on the electrode selected in step 2.
Every cycle consisted of a 5-minute series of rectangular pulses
with 2-minute breaks. In every experiment, the pause between
the pulses was adjusted so that every pulse could induce burst
activity. Based on stimulation results, a recording electrode was
chosen, for which electrical activity within 30-80 ms after the
signal was the lowest.

4) 1-hour recording of culture spontaneous bioelectrical
activity.

5) 20 training cycles. Training was considered successful
if a twofold increase in the probability to record spike activity
within the preset time interval on the electrode chosen in step
3 was observed. Training consisted of stimulation described in
paragraph 3, given that as soon as the success criterion had
been reached, stimulation was discontinued and a 2-minute
break was provided.

6) 1-hour recording of culture spontaneous bioelectrical
activity.

Detection of spikes and burst events

The initial signal was digitally processed by a second-order
high-pass Butterworth filter with a passband of over 200 Hz,
which allowed for the exclusion of low-frequency noise.
Action potentials were detected if signal amplitude exceeded
4 standard deviations. In that case, the maximum amplitude
was considered time of spike onset.

A burst event (burst) occurs on one electrode and is
characterized by a short-term explosion-like impulse generation
(0.1-3.0 s depending on culture age and its stocking density),
and is usually accompanied by the low-frequency (1-5 H2z)
signal component. Detection of bursts was based on the
identification of the low-frequency component in a given
interval and on spike detection in the vicinity of the component.
Time when the first and the last spikes were generated was
considered the burst onset and offset, respectively.

Population burst events are bursts that are observed
simultaneously (with small delays of about 0.002-0.05 s) on
more than a half of all active electrodes. The onset of the
population burst is time of the first burst event onset.



Pattern analysis

As a feature V, of a burst event, activation pattern was used
[10]. Vector V, dimensionality is equal to the number of active
electrodes, i.e., electrodes on which at least one burst was
observed:

V=10 - tksran N/‘:O = (Cko' ~Cip) (1)

where t,() represents activity onset on the ith electrode, and
.. represents time of population burst event onset. If no
activity was recorded on the electrode during a given burst,
but it was present during other bursts, the corresponding
vector component takes the averaged value of other vector
components.

As a metric, Pearson correlation coefficient was used.
For cluster analysis, the weighted pair-group method with
arithmetic averaging was used [20].

To obtain clusters, distances between neighboring vectors
in the ordered feature vector sequence were found; then, based
on the obtained distances, threshold value th was computed.
Neighboring vectors, the distances between which were less
than the threshold value, formed clusters.

Threshold value th was computed as follows. We built the
graph representing the dependence of the maximum distance
(D) between clusters on the number of clusters (n) in the order
of increasing. Thus,

th = Diargmax(£L)+2), )
an?

where argmax is a function that computes the maximum value.

RESULTS

Cluster analysis of spontaneous burst activity in two neuronal
cultures of 10...30 DIV (fig. 1) showed that in both cases over
50 % burst activation patterns belonged to the same dominating
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cluster (cluster 7 in fig. 1, A and cluster 5 in fig. 1, B). The
majority of other population bursts (40 %) were distributed in
two clusters that were equal in size, namely, clusters 6 and 9
(fig. 1, A) and clusters 4 and 6 (fig. 1, B). Dominating patterns
of neuronal bursts were stable, despite of external factors
related to medium replacements and to moving culture from
the incubator to the recording device and back

In the neuronal network training experiment, electrode 22
was chosen for stimulation (see paragraph 2 of the training
protocol); stimulation was terminated on electrode 12 (see
paragraph 3 of the training protocol). A prerequisite for
terminated stimulation was detection of 5 or more spikes in the
interval of 50-80 ms after stimulation was applied.

Results of cluster analysis of spontaneous burst activity
recorded at stages 1, 4 and 6 of the training protocol are
presented in figure 2. Before stimulation was applied to the
culture, population bursts were formed by two big clusters,
namely, 15 and 18. After stimulation with no feedback (stage
4), the number of bursts decreased in clusters 15 and 18 and
increased in clusters 2 and 4. After stimulation with feedback
(stage 6), the number of bursts in dominating clusters 15 and
18 remained on the intermediate level. The rest of the activity
shifted to cluster 3 from clusters 2 and 4.

The patterns of the dominating spontaneous burst activity
registered before and after stimulation were different (fig. 3). In
that respect, clusters 3 and 4 were alike, but both differed from
clusters 15 and 18, which overlapped to a great extent. Cluster
2 combined features of both sets of clusters.

DISCUSSION

According to our hypothesis, spontaneous burst activity
of neuronal networks in vitro must be characterized by self-
organization and repetitive activity patterns. Our experiment
and results obtained by other researchers [13, 21, 22] confirm
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Fig. 1. Clustering of spontaneous burst activity of two neuronal cultures in vitro with the following IDs: 3035 (A) and 3040 (C); percentage of bursts in clusters with the
following IDs: 3035 (B) and 3040 (D). Bursts are presented as they appeared. Red dotted lines represent days of culture development
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that with culture growth, self-organization of neurons results in
the emergence of the limited number of dynamic modes; each
of those modes is characterized by its own activity pattern, i.e.,
an attractor. Thus, neurons in vitro can produce and maintain
some activation sequence, which is necessary for memory
trace retention.

We also made a supposition that patterns of spontaneous
burst activity are resistant to external impact, including external
electrical stimulation. Results of our study demonstrate that
patterns do not depend on the presence of feedback during
stimulation; what changes is the frequency of their occurrence.
[t allows us to make an assumption that in live neuronal
networks, learning can be a result of variations of existing
patterns with subsequent selection of a template used to solve

the “problem”. In the protocol used in this study, the “problem”
was identified by means of external stimulation that can be
switched off to provide a solution.

CONCLUSIONS

Study of spontaneous burst activity of neuronal networks in
vitro showed that dynamics of network activity come down to a
small number of attractors. Changes in burst activity registered
after applying external stimulation showed that the dominating
attractor of spontaneous activity does not disintegrate, but the
variety of patterns increases. We can assume that learning is
mediated by switching between the existing dynamic attractors
of neuronal activity.

(A) | | (B) I I ] (C) |
I T VYN AT T T TR TN N TR
© 15 HI 0 10 ETIEET | L i R
g efF | I .
3 1 f | I -
?till ' ' ! ||'|||I | Lo 4
1 S | LR T R TR T T TN S
0 50 100 150 200 250 300 350

Burst ID

Fig. 2. Switching of activity patterns after stimulation without feedback and with
stimulation with feedback

feedback. (A) Before stimulation. (B) After stimulation without feedback. (C) After
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Fig. 3. Averaged burst feature vectors for clusters containing at least 5 % of all events shown in fig. 2. Green line (1) represents electrode 12, on which the culture was

trained. Red line represents electrode 22, on which stimulation was performed
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