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Устойчивость спонтанной электрической активности 
нейронных сетей in vitro

Stability of spontaneous electrical activity 
of neural networks in vitro

Using brain-computer interfaces, one can both read data from and transmit them to the brain. However, these data are only 
a set of sensor system signals and not the knowledge or experience. Neural networks are a basis for cognitive activity and 
can simulate processes similar to learning in vitro. In this work we tested the hypothesis of a neural network’s ability to learn 
by detecting deviations from its stereotypical activity and modifying them in a way that allows it to get rid of external electrical 
stimulation. Spontaneous activity of several neuronal cultures in vitro was analyzed by clustering method. The results showed 
that activity of untrained cultures remained stable for a long time, and external electrical stimulation led to switching between 
various spontaneous activity patterns. 

С  помощью нейро-компьютерных интерфейсов можно как считывать информацию с  мозга, так и  передавать ее 
в мозг. Однако эта информация — сигналы сенсорных систем, а не знание и опыт. Нейронные сети, представляю-
щие собой основу когнитивной деятельности, способны in vitro воспроизводить процессы, аналогичные обучению. 
В работе проверена гипотеза о том, что нейронная сеть реализует обучение путем обнаружения отклонения от своей 
стереотипной активности и модификации ее таким образом, чтобы избавиться от внешней электрической стимуляции. 
Спонтанная активность нескольких нейрональных культур in vitro была проанализирована методом кластеризации. 
Результаты показали, что активность необученных культур остается стабильной на протяжении длительного времени, 
а внешняя электрическая стимуляция приводит к переключению между паттернами спонтанной активности.
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In medicine, brain-computer interfaces are used for the 
development of neuroprostheses comparable to healthy 
organs in their responsiveness to user's mental commands 
[1–3]. Data can also be transmitted in the reverse direction, 
from the computer to the brain; for example, lost sensory 
functions, such as auditory [4] and visual [5], can be recovered 
using electrical stimulation. However, what’s more challenging 
for a researcher is transmission of information as such, i.e., 
knowledge and experience. It has been shown that using 
multi-input/multi-output non-linear dynamic model allows for 
transmitting a certain spatiotemporal pattern detected in the 
hippocampus of one rat to the hippocampus of another rat, 
which leads to the statistically reliable alterations in the behavior 
of the second animal [6].

It is known that neuronal networks that form a basis for 
cognitive activity do not have a distinct location in brain 
structures, but are distributed throughout them [7, 8]. From that, 
a need to reprogram neuronal networks ensues. Publications 
on the patterns patterns of neuronal network spontaneous 
activity in vitro and on the methods of its external modification 
[9–13] prove that networks of dissociated primary neuronal 
cultures of  cortical and hippocampal cells on multi-electrode 
arrays (MEAs) can control external stimulation by changing their 
activity on the selected experimental electrode. Such neuronal 
network learning was first demonstrated by Shahaf and Marom 
[14] and was successfully reproduced by other researchers 
thereafter [15–18].

As the network is gradually developing from the dissociated 
neuronal culture, it starts to exhibit spontaneous bioelectrical 
activity recorded by array electrodes. Thus, in the absence of 
external stimulation in the first days of culture growth, only single 
action potentials are registered, but after a while they cluster 
into bursts [19]. In this work we hypothesize that spontaneous 
burst activity comes down to a small number of stereotypical 
patterns, and cluster analysis can help identify one or several 
dominating patterns. Since the external stimulation breaks the 
existing activation sequence, the network changes its activity 
pattern to switch off stimulation and go back to the typical 
pattern. Then, cluster analysis performed after the stimulation 
(training) can detect the resumption of the initial activity pattern. 

METHODS

Cell cultures

Primary cell culture was prepared from the hippocampal tissue 
of newborn rats of C57BL/6 breed. Experimental animals 
used in the study were managed according to the guidelines 
specified in Order no. 267 of the Ministry of the Russian 
Federation, dated June 19, 2003, “On the approval of rules 
for good laboratory practice”. The experiment was approved 
by the local Ethics Committee for Biomedical Research of the 
National Research Center “Kurchatov Institute” (protocol no. 1,  
dated  July 9, 2015).

Cells were cultured on 60-channel multi-electrode arrays 
60StimMEA200/30-ITO (Multichannel Systems, Germany). 
Prior to the experiment, plates were coated with poly-L-lysine 
for better cell adhesion. The initial culture density was 300,000 
cells per mm3. Their dissociation was achieved by using 
0.25 % trypsin (Invitrogen 25200-056, USA). Neuronal viability 
was maintained in  NeurobasalTM culture medium (Invitrogen 
21103-049) in the complex with the bioactive additive В27 
(Invitrogen 17504-044), glutamin (Invitrogen 25030-024) and 
penicillin-streptomycin (Life Technologies 15140122, USA) 

in GALAXY 170S incubator (New Brunswick Scientific, USA) 
under stable conditions: temperature of 37 ˚C, humidity of 
100 % and 5 % CO2 air concentration. Glial cell growth was not 
inhibited, because glial cells were necessary to ensure long-
term culture viability in vitro.  Half of the medium volume was 
replaced every three days. 

Bioelectrical cell activity was recorded with MEA1060-
Up-BC-Standard system (Multichannel Systems). For data 
acquisition, the bundled software was used.

Dynamics of spontaneous burst activity were observed in 
two cultures. Recording was performed from the 4th day in vitro 
(DIV) until culture death. For further processing, we used data 
obtained in the interval between the onset and offset of burst 
activity. For training, one 24-DIV culture was used.

 

Protocol of neuronal culture training in vitro

1) 1-hour background recording of culture bioelectrical 
activity .

2) Stimulation by single bipolar rectangular pulses of ± 300 
mV on each electrode (one at a time) to select the electrode 
that evoked the most intense culture response. 

3) 5 stimulation cycles on the electrode selected in step 2. 
Every cycle consisted of a 5-minute series of rectangular pulses 
with 2-minute breaks. In every experiment, the pause between 
the pulses was adjusted so that every pulse could induce burst 
activity. Based on stimulation results, a recording electrode was 
chosen, for which electrical activity within 30–80 ms after the 
signal was the lowest.

4) 1-hour recording of culture spontaneous bioelectrical 
activity.

5) 20 training cycles. Training was considered successful 
if a twofold increase in the probability to record spike activity 
within the preset time interval on the electrode chosen in step 
3 was observed. Training consisted of stimulation described in 
paragraph 3, given that as soon as the success criterion had 
been reached, stimulation was discontinued and a 2-minute 
break was provided.

6) 1-hour recording of culture spontaneous bioelectrical 
activity.

Detection of spikes and burst events

The initial signal was digitally processed by a second-order 
high-pass Butterworth filter with a passband of over 200 Hz,
which allowed for the exclusion of low-frequency noise. 
Action potentials were detected if signal amplitude exceeded 
4 standard deviations. In that case,  the maximum amplitude 
was considered time of spike onset. 

A burst event (burst) occurs on one electrode and is 
characterized by a short-term explosion-like impulse generation 
(0.1–3.0 s depending on culture age and its stocking density), 
and is usually accompanied by the low-frequency (1–5 Hz) 
signal component. Detection of bursts was based on the 
identification of the low-frequency component in a given 
interval and on spike detection in the vicinity of the component. 
Time when the first and the last spikes were generated was 
considered the burst onset and offset, respectively. 

Population burst events are bursts that are observed 
simultaneously (with small delays of about 0.002–0.05 s) on 
more than a half of all active electrodes. The onset of the 
population burst is time of the first burst event onset.
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Pattern analysis

As a feature Vk of a burst  event, activation pattern was used 
[10]. Vector Vk dimensionality is equal to the number of active 
electrodes, i.e., electrodes on which at least one burst was 
observed:

where tk(i) represents activity onset on the ith electrode, and 
tk

start represents time of population burst event onset. If no 
activity was recorded on the electrode during a given burst, 
but it was present during other bursts, the corresponding 
vector component takes the averaged value of other vector 
components.

As a metric, Pearson correlation coefficient was used. 
For cluster analysis, the weighted pair-group method with 
arithmetic averaging was used [20].

To obtain clusters, distances between neighboring vectors 
in the ordered feature vector sequence were found; then, based 
on the obtained distances, threshold value th was computed. 
Neighboring vectors, the distances between which were less 
than the threshold value, formed clusters. 

Threshold value th was computed as follows. We built the 
graph representing the dependence of the maximum  distance 
(D)  between clusters on the number of clusters (n) in the order 
of increasing. Thus,

where  argmax is a function that computes the maximum value.

RESULTS

Cluster analysis of spontaneous burst activity in two neuronal 
cultures of 10…30 DIV (fig. 1) showed that in both cases over 
50 % burst activation patterns belonged to the same dominating 

Fig. 1. Clustering of spontaneous burst activity of two neuronal cultures in vitro with the following IDs: 3035 (A) and 3040 (C); percentage of bursts in clusters with the 
following IDs: 3035 (B) and 3040 (D). Bursts are presented as they appeared. Red dotted lines represent days of culture development
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cluster (cluster 7 in fig. 1, А and cluster 5 in fig. 1, В). The 
majority of other population bursts (40 %) were distributed in 
two clusters that were equal in size, namely, clusters 6 and 9 
(fig. 1, А) and clusters 4 and 6 (fig. 1, В). Dominating patterns 
of neuronal bursts were stable, despite of external factors 
related to medium replacements and to moving culture from 
the incubator to the recording device and back 

In the neuronal network training experiment, electrode 22 
was chosen for stimulation (see paragraph 2 of the training 
protocol); stimulation was terminated on electrode 12 (see 
paragraph 3 of the training protocol). A prerequisite for 
terminated stimulation was detection of 5 or more spikes in the 
interval of 50–80 ms after stimulation was applied.

Results of cluster analysis of spontaneous burst activity 
recorded at stages 1, 4 and 6 of the training protocol are 
presented in figure 2. Before stimulation was applied to the 
culture, population bursts were formed by two big clusters, 
namely, 15 and 18. After stimulation with no feedback (stage 
4), the number of bursts decreased in clusters 15 and 18 and 
increased in clusters 2 and 4. After stimulation with feedback 
(stage 6), the number of bursts in dominating clusters 15 and 
18 remained on the intermediate level. The rest of the activity 
shifted to cluster 3 from clusters 2 and 4.

The patterns of the dominating spontaneous burst activity 
registered before and after stimulation were different (fig. 3).  In 
that respect, clusters 3 and 4 were alike, but both differed from 
clusters 15 and 18, which overlapped to a great extent. Cluster 
2 combined features of both sets of clusters.

DISCUSSION

According to our hypothesis, spontaneous burst activity 
of neuronal networks in vitro must be characterized by self-
organization and repetitive activity patterns. Our experiment 
and results obtained by other researchers [13, 21, 22] confirm 
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Fig. 2. Switching of activity patterns after stimulation without feedback and with feedback. (A) Before stimulation. (B) After stimulation without feedback. (C) After 
stimulation with feedback

Fig. 3. Averaged burst feature vectors for clusters containing at least 5 % of all events shown in fig. 2. Green line (1) represents electrode 12, on which the culture was 
trained. Red line represents electrode 22, on which stimulation was performed
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that with culture growth, self-organization of neurons results in 
the emergence of the limited number of dynamic modes; each 
of those modes is characterized by its own activity pattern, i.e., 
an attractor. Thus, neurons in vitro can produce and maintain 
some activation sequence, which is necessary for memory 
trace retention. 

We also made a supposition that patterns of spontaneous 
burst activity are resistant to external impact, including external 
electrical stimulation. Results of our study demonstrate that 
patterns do not depend on the presence of feedback during 
stimulation; what changes is the frequency of their occurrence. 
It allows us to make an assumption that in live neuronal 
networks, learning can be a result of variations of existing 
patterns with subsequent selection of a template used to solve 

the “problem”. In the protocol used in this study, the “problem” 
was identified by means of external stimulation that can be 
switched off to provide a solution. 

CONCLUSIONS

Study of spontaneous burst activity of neuronal networks in 
vitro showed that dynamics of network activity come down to a 
small number of attractors. Changes in burst activity registered 
after applying external stimulation showed that the dominating 
attractor of spontaneous activity does not disintegrate, but the 
variety of patterns increases. We can assume that learning is 
mediated by switching between the existing dynamic attractors 
of neuronal activity.
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