ПРИМЕНЕНИЕ АНТИМИКРОБНОЙ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ НА ОСНОВЕ МЦ540 К МОДЕЛИ РАНЕВОЙ ИНФЕКЦИИ

Т. А. Шмиголь¹[⊠], К. А. Собянин², М. В. Прусак-Глотов¹, С. П. Щелыкалина³, Е. В. Невежин³, С. А. Ермолаева⁴, В. В. Негребецкий¹

¹ Отдел медицинской химии и токсикологии, Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва
² Лаборатория биологических испытаний, Институт трансляционной медицины, Российский национальный исследовательский медицинский университет имени Н. И. Пирогова. Москва

³ Кафедра медицинской кибернетики и информатики, медико-биологический факультет, Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва

⁴ Лаборатория экологии возбудителей инфекций, Национальный исследовательский центр эпидемиологии и микробиологии имени Н. Ф. Гамалеи, Москва

Фотодинамическая терапия (ФДТ) является альтернативным методом лечения инфекций, позволяющим убивать лекарственно-устойчивые бактерии без повреждения ткани хозяина. В настоящем исследовании использован полирезистентный клинический штамм *Pseudomonas aeruginosa PA21 (P. aeruginosa*) в модели раневой инфекции на мышах для изучения влияния ФДТ (в водных растворах анионного фотосенсибилизатора Мероцианина 540 (МЦ540): в воде и 0,25 M NaCl) на бактериальную инактивацию и заживление ран. После проведения ФДТ гибель бактерий оценивали путем определения бактериологической нагрузки в ранах, процесс заживления ран контролировали прямым измерением штангенциркулем в двух проекциях, а также проведением патоморфологических исследований послойных срезов инфицированных ран. Полученные результаты показали, что ФДТ в присутствии МЦ540 в растворе хлорида натрия (но не МЦ540 в воде) способна вызывать гибель бактерии, препятствовать их восстановлению и значительно ускорять процесс заживления ран.

Ключевые слова: антимикробная фотодинамическая терапия, полирезистентный клинический штамм *Pseudomonas* aeruginosa, инфекция кожи и мягких тканей, заживление ран, мероцианин 540, раневая инфекция

Финансирование: исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 16-33-00970 мол_а.

Для корреспонденции: Татьяна Анатольевна Шмиголь ул. Островитянова, д. 1, г. Москва, 117997; tatishtish@gmail.com

Статья получена: 20.01.2018 Статья принята к печати: 23.03.2018

DOI: 10.24075/vrgmu.2018.011

THE USE OF ANTIMICROBIAL PHOTODYNAMIC THERAPY MEDIATED BY MC540 IN THE INFECTED WOUND MODEL

Shmigol TA^{1™}, Sobianin KA², Prusak-Glotov MV¹, Shchelykalina SP³, Nevezhin EV³, Yermolaeva SA⁴, Negrebetsky VadV¹

¹ Department of Medicinal Chemistry and Toxicology, Pirogov Russian National Research Medical University, Moscow

² Laboratory of Biological Research. Institute for Translational Medicine, Pirogov Russian National Research Medical University, Moscow

³ Department of Medical Cybernetics and Informatics, Biomedical Faculty, Pirogov Russian National Research Medical University, Moscow

⁴ Laboratory for the Ecology of Pathogens, Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow

Photodynamic therapy (PDT) is an alternative to conventional therapies of infections. It can kill drug-resistant bacteria without damaging host tissues. In the present work we use the multiresistant strain *PA21* of *Pseudomonas aeruginosa* to model a wound infection in mice and study the effect of PTD mediated by aqueous solutions of the anionic photosensitizer merocyanine 540 (solubilized in water and in 0.25 M sodium chloride) on bacterial decontamination and wound healing. To assess a therapeutic effect of PDT, we monitored bacterial contamination of the wound, measured the wound size in two planes using a caliper and carried out a histopathological examination of infected tissue sections. Our study reveals that PDT mediated by MC540 in the sodium chloride solution can induce bacterial death, inhibit bacterial re-growth and accelerate wound healing.

Keywords: antimicrobial photodynamic therapy, multiresistant clinical strain, *Pseudomonas aeruginosa*, skin infection, soft tissue infection, wound healing, merocyanine 540, wound infection

Funding: this study was supported by the Russian Foundation for Basic Research (Project ID 16-33-00970 mol_a).

Correspondence should be addressed: Tatiana Shmigol Ostrovityanova 1, Moscow, 117997; tatishtish@gmail.com

Received: 20.01.2018 Accepted: 23.03.2018

DOI: 10.24075/brsmu.2018.011

Кожа служит физическим барьером и первой линией защиты организма от окружающих патогенов. При повреждении кожного покрова в ране может развиться инфекция и остановить процесс заживления раны, приведя к увеличению риска заболеваемости и даже смертности. Открытие антибиотиков произвело революцию в лечении инфекций, но наблюдающееся в последнее время увеличение резистент-

ности к антибиотикам среди патогенных бактерий диктует необходимость поиска новых альтернативных методов лечения локализованных инфекций. Одним из таких методов стала ФДТ, которая ранее успешно применялась в лечении онкологии [1–3], а недавно была предложена для лечения бактериальных инфекций [4–7]. Суть антимикробной ФДТ заключается в местном применении в инфицированной ткани нетоксичного красителя — фотосенсибилизатора (ФС) с последующим воздействием монохроматическим светом с длинной волны, к которой чувствителен ФС [8–9]. Под действием света ФС активируется, генерируя свободные радикалы и/или синглетный кислород, губительные для инфекционных агентов.

Цель настоящего исследования заключалась в изучении влияния ФДТ с использованием анионного ФС МЦ540 в модели раневой инфекции на животных на бактериальную инактивацию и на процесс заживления ран. Мыши линии BALB/с были инфицированы полирезистентным клиническим штаммом *Pseudomonas aeruginosa PA21*. Инактивацию бактерий оценивали путем определения бактериологической нагрузки в ранах, процесс заживление ран контролировали прямым измерением штангенциркулем в двух проекциях, а также проведением патоморфологических исследований послойных срезов инфицированных ран.

МАТЕРИАЛЫ И МЕТОДЫ

Фотосенсибилизатор

Маточный раствор МЦ540 (Sigma-Aldrich, Швейцария) в концентрации 1×10⁻³ М готовили в 96% этаноле в день проведения опыта. Концентрацию МЦ540 определяли спектрофотометрически с использованием коэффициента экстинкции $\varepsilon_{500} = 63~000~M^{-1}cm^{-1}$ в воде. В рабочих растворах концентрация МЦ540 составляла 25 мкМ, которую получали путем разведения маточного раствора МЦ540 (1×10⁻³ М) водой или 0,25 М раствором NaCl (ACROS, США).

Культуры клеток микроорганизмов

В работе использовали полирезистентный клинический штамм *Pseudomonas aeruginosa PA21* из коллекции микроорганизмов ФГБУ ФНИЦ эпидемиологии и микробиологии имени Н. Ф. Гамалеи.

Р. aeruginosa инкубировали в течение ночи при 37 °С в питательном бульоне Brain Heart Infusion (BHI «Difco», США), разводили в свежей питательной среде 1:100, растили до оптической плотности (*OD*₆₀₀), равной 1, что соответствует концентрации 10⁹ КОЕ/мл. Далее культуру дважды отмывали фосфатно-солевым буфером (pH = 7,4) (Экосервис, Россия) и аликвотами по 50 мкл наносили на рану.

Бактериальная нагрузка ран

Отбор материала производили по следующей методике: при помощи ватных тампонов получали мазок непосредственно с поверхности раны. Далее тампон помещали в пробирку с 0,9 мл физиологического раствора, из которого в последующем готовили серийные разведения 1:10, 1:100, 1:1000. Каждое разведение высевали на две чашки с агаризованной средой (BHI «Difco», США), подсчет колоний проводили через 24 ч, результаты выражали в колоние-

Таблица 1. План исследования на животных

образующих единицах (КОЕ), а именно в десятичном логарифме, взятом от количества КОЕ.

Антимикробная фотодинамическая терапия

Манипуляции во время проведения экспериментов выполняли с соблюдением правил асептики и антисептики с использованием щадящей методики обезболивания. Все исследования проводили с соблюдением правил биоэтики и международных принципов и требований «Европейской конвенции по защите позвоночных животных» (Страсбург, март 1986 г.) и Хельсинской декларации о гуманном отношении к животным.

В исследовании использовали мышей BALB/с 6–8 недель и весом 17–21 г. За сутки до проведения ФДТ на спине животных выбривали участок кожи площадью 2 см² и затем перманентным маркером намечали контур будущей раны. Перед формированием раны животным давали ингаляционный наркоз (изофлуран). Поверхность кожи дважды обрабатывали антисептиком, наносили рану округлой формы 1,5 см в диаметре, иссекали кожу, подкожную клетчатку и фасцию до мышц. Далее на рану наносили аликвоту объемом 50 мкл, содержащую суспензию бактерий (*P. aeruginosa*) в концентрации 10⁷ КОЕ/мл. Через 6 ч после инокуляции бактерий проводили ФДТ.

Животных разделили на 4 группы (табл. 1). Мыши из группы А (*n* = 18) служили в качестве абсолютного контроля, не получая никакого лечения; мыши из группы Б (*n* = 18) служили в качестве светового контроля и для лечения инфицированной раны облучались монохроматическим светом с длиной волны 530 нм и временем экспозиции 5 мин; мыши группы В (*n* = 18) получали ФДТ в присутствии 25 мкМ водного раствора МЦ540 с облучением монохроматическим светом с длиной волны 530 нм и временем экспозиции 5 мин; мыши группы Г (*n* = 18) получали ФДТ в 25 мкМ водном растворе МЦ540 в присутствии 0,25 М NaCl с облучением монохроматическим светом с длиной волны 530 нм и временем экспозиции 5 мин. Из каждой группы было оставлено по 3 животных для наблюдения за долгосрочными эффектами (36 сут.).

Мышей обрабатывали локально 50 мкл раствора 25 мкМ в 0,25 М NaCl, с экспозицией без облучения в течение 5 мин. Обработанные очаги были освещены светом с длиной волны 530 нм, обеспечивающим 2 мВт/см² в течение 5 мин, что соответствует общей дозе 6 Дж/см².

Гистология

Биологический материал фиксировали в буферном растворе 10%-го формалина. Фиксированные образцы заключали в парафин. Срезы толщиной 3–7 мкм окрашивали гематоксилин-эозином и использовали для микроструктурного анализа и морфометрических наблюдаемых процессов. Морфометрические данные были получены с помощью микроскопа-анализатора AxioimagerA-2 (Carl Zeiss, Германия).

Группа	Количество животных	Бактерии	Лечение
Группа А: абсолютный контроль	18	P. aeruginosa	Без лечения
Группа Б: световой контроль	18	P. aeruginosa	Свет (6 Дж/см²; λ = 530 нм)
Группа В: ФДТ + МЦ540	18	P. aeruginosa	МЦ540 + Свет (6 Дж/см²; λ = 530 нм)
Группа Г: ФДТ + МЦ540 + 0,25 M NaCl	18	P. aeruginosa	МЦ540 + 0,25 M NaCl + Свет (6 Дж/см²; λ = 530 нм)

Заживление раневого дефекта

При наблюдении за состоянием раневых дефектов оценивали наличие признаков воспаления, характер и количество раневого отделяемого и т. д. Измерение ран с помощью линейки и штангенциркуля в двух проекциях осуществляли за 1 ч до проведения ФДТ на 2-е, 4-е, 7-е и 14-е сут. Для выявления характера течения репаративных процессов в исследуемых группах животных вычисляли следующие показатели динамики заживления экспериментальных ран:

1. Показатель изменения площади раневой поверхности в динамике (ΔS, %):

$$\frac{(S_0 - S_n) \times 100}{S_0}$$

где S₀ — исходная площадь раны, S_n — площадь раны на n-е сутки.

 Относительная скорость уменьшения площади раневого дефекта (v_{заж}, %/сутки):

$$\frac{(S_0 - S_n) \times 100\%}{S_0 \times n},$$

где S₀ — исходная площадь раны, S_n — площадь раны на n-е сутки, n — порядковый номер суток эксперимента.

3. Показатель скорости эпителизации раны ($\nu_{\text{эпит.}}, \text{ мм}^2$ / сутки):

$$\frac{S_0 - S_n}{T}$$

где S₀ — исходная площадь раны, S_n — площадь раны на n-е сутки, Т — число суток между измерениями.

Все цифровые данные обрабатывали с использованием компьютерной программы Universlab DeskTer River V3.3.3269

Таблица 2. Изменение бактериальной нагрузки ран, КОЕ/мл

Статистика

Рассчитывали средние значения определяемых величин и стандартную ошибку среднего: SEM = $\frac{s}{\sqrt{n}}$, где s — выборочное среднее квадратичное отклонение.

РЕЗУЛЬТАТЫ

На следующие сутки после моделирования ран и проведения ФДТ общее состояние животных можно было оценить как удовлетворительное. Животные были активны, слизистые оболочки без видимых изменений, шерстный покров гладкий. Раны у всех животных имели признаки развивающегося нагноения. Наиболее выраженное нагноение наблюдалось в контрольных группах.

Бактериальная нагрузка

Одним из значимых критериев оценки эффективности проведенного лечения гнойных ран мягких тканей является микробиологическое исследование. Определение бактериальной нагрузки производилось до начала проведения лечения, через 48, 96 и 168 ч после ФДТ. Количественные показатели бактериальной нагрузки ран представлены в табл. 2.

Через 6 ч после инфицирования перед ФДТ исходная контаминация ран во всех группах животных была одинаковой и составила 5,03 \pm 0,04×10 $^{\rm 6}$ КОЕ/мл.

В опытных группах В (ФДТ индуцированная МЦ540 в воде) и Г (ФДТ индуцированная МЦ540 в растворе натрия хлорида) через 48 ч после проведения ФДТ количество *Р. aeruginosa* уменьшилось на 10² и 10³ КОЕ/мл соответственно.

	Время после проведения ФДТ			
Группа	0 ч	48 ч	96 ч	168 ч
Группа А	5,00 × 10 ⁶	$1,5 imes 10^5$	$1,7 imes 10^5$	$1,4 imes 10^4$
Группа Б	4,95 × 10 ⁶	$1,2 imes 10^5$	$1,6 imes 10^5$	$1,0 imes 10^4$
Группа В	5,01 × 10 ⁶	2,0 × 10 ⁴	$0,7 imes 10^2$	Не высевалось
Группа Г	5,15 × 10 ⁶	1,5 × 10³	Не высевалось	Не высевалось

Таблица 3. Морфометрический анализ состояния ремоделирования внутрираневого матрикса у мышей линии BALB/с

Показатель изменения площади раневой поверхности в динамике, ΔS					
	Время после проведения ФДТ, сут.				
Группа	2-е сут.	4-е сут.	7-е сут.	14-е сут.	
Группа А	11,11 ± 0,37	25,00 ± 0,82	41,11 ± 1,36	84,43 ± 3,78	
Группа Б	13,55 ± 0,45	32,22 ± 1,39	50,01 ± 1,65	85,30 ± 3,75	
Группа В	16,66 ± 0,53	40,02 ± 2,17	48,33 ± 1,76	93,31 ± 1,89	
Группа Г	30,01 ± 2,33	55,55 ± 3,61	67,77 ± 4,75	94,77 ± 4,17	
Относительная скорость уменьшения дефекта, v _{заж.}					
	Время после проведения ФДТ, сут.				
Группа	2-е сут.	4-е сут.	7-е сут.	14-е сут.	
Группа А	5,55 ± 0,18	6,25 ± 0,21	5,87 ± 0,19	6,03 ± 0,12	
Группа Б	7,50 ± 0,25	10,51 ± 0,35	7,14 ± 0,24	5,95 ± 0,13	
Группа В	8,33 ± 0,29	10,00 ± 0,87	6,90 ± 0,77	5,92 ± 0,28	
Группа Г	15,01 ± 0,16	13,88 ± 1,91	9,68 ± 1,01	7,33 ± 0,45	

Сравнительная характеристика течения инфицированных раневых дефектов

Сравнительный анализ результатов наблюдения характеристик течения раневых дефектов в экспериментальных группах позволил установить межгрупповые различия динамики заживления раневых дефектов по показателю ΔS (табл. 3).

Анализ полученных данных показал, что значения ∆S контрольных групп А и Б достоверно меньше (р < 0,05) соответствующих показателей опытных групп В и Г на всех этапах проведения эксперимента (исключение составило отсутствие значимых различий с результатом группы Б и В на 7-е сут.).

Сравнительный анализ скоростей заживления раневых дефектов в динамике выявил значимые внутригрупповые различия показателей $v_{\text{заж.}}$ (см. табл. 3). Из полученных данных видно, что наибольшая скорость заживления наблюдается в группе Г, а в остальных группах на протяжении 14 сут., показатели $v_{\text{заж.}}$ находились на достаточно стабильном уровне (р > 0,05). Отметим, что скорость заживления к 14 сут. снижается и становится практически одинаковой для всех групп.

Нами выявлены существенные изменения, а также межгрупповые различия показателей скорости эпителизации раневых дефектов (v_{эпит.}) в процессе проведения эксперимента (табл. 4).

Максимальные значения скорости эпителизации (v_{эпит}) в интервале 4–7 сутки были отмечены в группе Г (р < 0,05 во всех случаях), к 14 сут. скорость эпителизации во всех группах снижалась.

В первые 48 ч в ране происходят изменения, характеризующиеся формированием кровяного сгустка. В основе сгустка лежит фибрин, который формирует струп с выпотом экссудата и клеточных элементов с преобладанием нейтрофилов. Наступает лизис форменных элементов крови с формированием всех признаков гнойного воспаления (рис. 1 А).

Под лизирующимся струпом бурно разрастается молодая соединительная ткань в основе которой выявляются многочисленные тонкостенные капилляры, синусы, лакуны, заполненные большим количеством крови (рис. 1 Б). Со временем (4–7 сут.) вновь образованная соединительная ткань превращается в рубцовую, порой гиализированную и даже петрифицированную (рис. 1 Е). Даже неглубоко расположенные такие инфильтраты вызывают контрактуры, и, следовательно, приводят к неподвижности кожи.

В это же время в гистологических препаратах выявлялось медленное (24-48 ч), а затем бурное размножение базальных клеток эпидермиса с нарастающей его кератинизацией. Разрастаясь и дифференцируясь, эпидермис постепенно закрывает дефект кожи (табл. 4, рис. 1 Д). Синтетические процессы в ране проходят равнонаправленно, но с определенным сдвигом во времени. На эти

Таблица 4. Морфофункциональная динамика репаративного эпителиального покрова инфицированных ран мышей линии BALB/c

Скорость эпителизации раны, v _{эпит.}					
	Время после проведения ФДТ, дни				
Группа	2-е сут.	4-е сут.	7-е сут.	14-е сут.	
Группа А	1,07 ± 0,04	5,17 ± 0,23	15,69 ± 1,18	6,33 ± 1,05	
Группа Б	2,24 ± 0,07	6,19 ± 0,27	16,07 ± 0,82	6,41 ± 1,16	
Группа В	2,63 ± 0,09	5,41 ± 0,24	14,31 ± 0,45	6,09 ± 1,24	
Группа Г	3,52 ± 0,11	8,01 ± 0,35	16,94 ± 0,86	8,11 ± 1,53	

Рис 1. Микроструктура инфицированных ран кожи мышей после ФДТ. Окраска: гематоксилин-эозин. (А) Молодая грануляционная ткань раны на 4-е сут., ×150. (Б) Гиперемия сосудов и отек тканей микрососудистого русла на 4-е сут., ×350. (В) «Заболоченность» кровью мышечной ткани раны на 4-е сут., ×250. (Г) Фрагменты мышечной ткани в состоянии внутриклеточной регенерации на 7-е сут., ×450. (Д) Эпителизация и рубцевание ран на 14-е сут., ×150. (Е) Гиалиоз и петрификация внутренней рубцовой ткани на 36-е сут., ×150

процессы влияет много факторов, в том числе заданные экспериментом (табл. 3 и 4, рис. 1).

Обилие крови, усиленная оксигенация и обилие ферментативных процессов в ране, возникающие со временем, усиливают процесс неполной репаративной регенерации. Протекающий процесс вызывает даже внутриклеточную регенерацию миосателлитов (табл. 3 и 4, рис 1 Г).

Таким образом, микроструктурный анализ хорошо коррелирует с полученными данными (табл. 2–4, рис. 1) и указывает на бурное заживление ран за счет активного роста, дифференцировки и созревания микрососудистого русла с формированием грануляционной ткани, а также усиленной эпителизации раневого дефекта.

ОБСУЖДЕНИЕ

В исследованиях *in vitro* ранее нами было показано, что в случае ФДТ МЦ540 в присутствии 0,25 М NaCl инактивация *P. aeruginosa* возрастает в 10 раз по сравнению с ФДТ МЦ540 в воде [10]. Наблюдаемый эффект был объяснен разной степенью агрегации МЦ540 в воде и в присутствии соли. В воде МЦ540 находится как в мономерной, так и димерной формах [11], из которых только мономерная форма способна генерировать активные формы кислорода, в первую очередь — синглетный кислород [12, 13]. В солевых растворах МЦ540 образует крупные кристаллоподобные агрегаты, способные к генерации свободных радикалов [14–17].

Представленные в настоящем исследовании данные на животных моделях убедительно подтвердили ранее полученные данные *in vitro* по следующим показателям: гибель бактерий, препятствование их восстановлению и ускорение процесса заживления ран.

Действительно, согласно представленным в табл. 2 данным, после проведенной ФДТ с МЦ540 в растворе хлорида натрия полное очищение раны от полирезистентного штамма *P. aeruginosa* происходит к 4 сут., тогда как при проведении ФДТ с МЦ540 в воде аналогичные изменения наблюдались лишь на 7-е сут.

Морфометрические данные (табл. 3) подтверждают лучшую эффективность агрегатов МЦ540 по сравнению с его мономерами и димерами в отношении скорости за-

Литература

- Fakayode OJ, Tsolekile N, Songca SP, Oluwafemi OS. Applications of functionalized nanomaterials in photodynamic therapy. Biophys. 2018; 2. doi: 10.1007/s12551-017-0383-2.
- 2. Rundle P. Photodynamic Therapy for Eye Cancer. Biomedicines. 2017; 5 (4): 69.
- Meimandi M, Talebi Ardakani MR, Esmaeil Nejad A, Yousefnejad P, Saebi K, Tayeed MH. The Effect of Photodynamic Therapy in the Treatment of Chronic Periodontitis: A Review of Literature. J Lasers Med Sci. 2017; 8 (1): 7–11.
- Demidova TN, Hamblin MR. Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol. 2004; 17: 245–54.
- Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004; 3: 436–50.
- Hamblin MR. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol. 2016; 33: 67–73.
- 7. Neundorf I. Reinhardt A. Design and Application of Antimicrobial Peptide Conjugates. Int J Mol Sci. 2016; 17 (5): 701.
- 8. Joseph B, Janam P, Narayanan S, Anil S. Is Antimicrobial

живления раневого дефекта и уменьшения его площади. Так, к 4 сут. площадь раневого дефекта у животных из группы Г уменьшилась на 45%, в то время как для группы В эта величина составляет 60%, что близко к показателям группы Б (68%).

Наблюдаемые изменения относительной скорости уменьшения дефекта (табл. 3) в случае группы А имеют практически линейную зависимость (с учетом среднеквадратичного отклонения), для групп Б-В — параболическую с максимумом на 4-е сут., а для группы Г — экспоненциальную. Для животных всех исследованных групп на 14-е сутки наблюдалось снижение скорости заживления. Полученные данные согласуются с описанным ранее изменением показателя площади раневой поверхности (табл. 3).

Регенерация эпителиального покрова ран происходит значительно быстрее, и становиться ярко выраженной уже на 4-е сут. в группе Г (см. табл. 4), в отличии не только от контроля, но и группы, получившей лечение на основе ФДТ с МЦ540 в воде.

Микроструктурный анализ хорошо коррелирует с полученными данными (табл. 2–4, рис. 1) и указывает на бурное заживление ран за счет активного роста, дифференцировки и созревания микрососудистого русла с формированием грануляционной ткани, а также усиленной эпителизации раневого дефекта. Однако, хотя процессы заживления, а также очищения раны от патогенных бактерий происходили намного быстрее в случае применения ФДТ с МЦ540 в растворе хлорида натрия, сам процесс происходит «жестче» с расплавлением фибрина и образованием фибриноида. Для ФДТ с МЦ540 в воде процесс заживления проходит медленнее, «мягче» и без активного образования фибриноида.

выводы

Согласно данным, полученным в модели раневой инфекции на мышах, ФДТ с МЦ540 в растворе хлорида натрия способна намного эффективнее вызывать гибель бактерий, препятствовать их последующему восстановлению и значительно ускорять процесс заживления ран, по сравнению с контрольными группами и ФДТ с МЦ540 в воде.

Photodynamic Therapy Effective as an Adjunct to Scaling and Root Planing in Patients with Chronic Periodontitis? A Systematic Review Biomolecules. 2017; 7 (4): 79.

- Liu CC, Zhao JJ, Zhang R1, Li H, Chen B, Zhang LL et al. Multifunctionalization of graphene and graphene oxide for controlled release and targeted delivery of anticancer drugs. Am J Transl Res. 2017; 9 (12): 5197–219.
- 10. Шмиголь Т. А., Бехало В. А., Сысолятина Е. В., Нагурская Е. В., Ермолаева С. А., Потапенко А. Я. Влияние хлорида натрия на агрегацию мероцианина 540 и фотосенсибилизированную инактивацию Pseudomonas aeruginosa и Staphylococcus aureus. Acta Naturae. 2011: 112–118.
- Bilski P, McDevitt T, Chignell CF. Merocyanine 540 solubilized as an ion pair with cationic surfactant in nonpolar solvents: spectral and photochemical properties. Photochem Photobiol. 1999; 69 (6): 671–676.
- Levard C, Hotze EM, Lowry GV, Brown GE Jr. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012; 3; 46 (13): 6900–14.
- 13. Kepczynski M, Dzieciuch M, Nowakowska M. Nano-structural

hybrid sensitizers for photodynamic therapy. Curr Pharm Des. 2012; 18 (18): 2607-21.

- Ragàs X, Xin He, Agut M, Roxo-Rosa M, Rocha Gonsalves A, Arménio C. Serra et al. Singlet Oxygen in Antimicrobial Photodynamic Therapy: Photosensitizer-Dependent Production and Decay in E. coli. Molecules. 2013; 18 (3): 2712–25.
- Yin R, Dai T, Avci P, Jorge AE, de Melo WC, Vecchio DH. et al. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr Opin Pharmacol. 2013; 13: 731–62.

References

- 1. Fakayode OJ, Tsolekile N, Songca SP, Oluwafemi OS. Applications of functionalized nanomaterials in photodynamic therapy. Biophys. 2018; 2. doi: 10.1007/s12551-017-0383-2.
- 2. Rundle P. Photodynamic Therapy for Eye Cancer. Biomedicines. 2017; 5 (4): 69.
- Meimandi M, Talebi Ardakani MR, Esmaeil Nejad A, Yousefnejad P, Saebi K, Tayeed MH. The Effect of Photodynamic Therapy in the Treatment of Chronic Periodontitis: A Review of Literature. J Lasers Med Sci. 2017; 8 (1): 7–11.
- Demidova TN, Hamblin MR. Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol. 2004; 17: 245–54.
- Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004; 3: 436–50.
- Hamblin MR. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol. 2016; 33: 67–73.
- 7. Neundorf I. Reinhardt A. Design and Application of Antimicrobial Peptide Conjugates. Int J Mol Sci. 2016; 17 (5): 701.
- Joseph B, Janam P, Narayanan S, Anil S. Is Antimicrobial Photodynamic Therapy Effective as an Adjunct to Scaling and Root Planing in Patients with Chronic Periodontitis? A Systematic Review Biomolecules. 2017; 7 (4): 79.
- Liu CC, Zhao JJ, Zhang R1, Li H, Chen B, Zhang LL et al. Multifunctionalization of graphene and graphene oxide for controlled release and targeted delivery of anticancer drugs. Am J Transl Res. 2017; 9 (12): 5197–219.
- 10. Shmigol TA, Behalo VA, Syisolyatina EV, Nagurskaya EV, Ermolaeva SA, Potapenko AYa. Vliyanie hlorida natriya na

- Vatansever F, de Melo WC, Avci P, et al. 2013. Antimicrobial strategies centered around reactive oxygen species — Bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev. 2013; 37 (6): 955–89.
- Avci P, Erdem SS, Hamblin MR. Photodynamic Therapy: One Step Ahead with Self-Assembled Nanoparticles J Biomed Nanotechnol. 2014; 10 (9): 1937–52.

agregatsiyu merotsianina 540 i fotosensibilizirovannuyu inaktivatsiyu Pseudomonas aeruginosa i Staphylococcus aureus. Acta Naturae. 2011: 112–118.

- Bilski P, McDevitt T, Chignell CF. Merocyanine 540 solubilized as an ion pair with cationic surfactant in nonpolar solvents: spectral and photochemical properties. Photochem Photobiol. 1999; 69 (6): 671–676.
- 12. Levard C, Hotze EM, Lowry GV, Brown GE Jr. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012; 3; 46 (13): 6900–14.
- Kepczynski M, Dzieciuch M, Nowakowska M. Nano-structural hybrid sensitizers for photodynamic therapy. Curr Pharm Des. 2012; 18 (18): 2607–21.
- Ragàs X, Xin He, Agut M, Roxo-Rosa M, Rocha Gonsalves A, Arménio C. Serra et al. Singlet Oxygen in Antimicrobial Photodynamic Therapy: Photosensitizer-Dependent Production and Decay in E. coli. Molecules. 2013; 18 (3): 2712–25.
- Yin R, Dai T, Avci P, Jorge AE, de Melo WC, Vecchio DH. et al. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr Opin Pharmacol. 2013; 13: 731–62.
- Vatansever F, de Melo WC, Avci P, et al. 2013. Antimicrobial strategies centered around reactive oxygen species — Bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev. 2013; 37 (6): 955–89.
- Avci P, Erdem SS, Hamblin MR. Photodynamic Therapy: One Step Ahead with Self-Assembled Nanoparticles J Biomed Nanotechnol. 2014; 10 (9): 1937–52.