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There are thousands of species capable of emitting light. 
They are referred to as bioluminescent. The majority of them 
inhabits the depths of the world’s seas and oceans, but some 
glowing species such as insects, worms and fungi can also 
be found above the water surface. Bioluminescence is a result 
of luciferase-catalyzed oxidation of a small luciferin molecule 
by air, accompanied by the emission of a photon in the 
visible spectrum. This reaction has inspired the development 
of bioluminescence imaging aimed to visualize processes 
happening inside the living organism. Bioluminescence imaging 
has found its way into medical research, including cancer 
research and development of anticancer drugs. In the last few 
years this method has become increasingly popular due to its 
unsurpassed sensitivity in producing accurate images of the 
interior of living organisms, down to the level of a single cell.

The number of unique luciferin-luciferase pairs occurring in 
nature is estimated to be as high as 40 [1]. However, in spite of 

such variety, only a few well-studied bioluminescent systems 
are currently applied in medical science, including firefly 
D-luciferin, bacterial and coelenterazine systems. For each 
type of a luciferin there are a few “complementary” luciferases 
found in different organisms. For example, for D-luciferin as 
many as 30 natural luciferases are known, while coelenterazine 
is “complementary” to 15 luciferases and 8 photoproteins, 
i.e. stable substrate/protein complexes [2]. Once we know 
the exact luciferase amino acid sequence, we can insert the 
gene for this enzyme into another organism’s genome and 
stimulate its expression in it. Introduction of external luciferin 
into this system will cause the cells to glow. In turn, the 
emitted light can be registered and subsequently analyzed. 
Bioimaging is possible not only with cells and tissues but also 
with cell organelles and for cell-cell/protein-protein interactions. 
Because different types of luciferins, their functional analogs 
and luciferases (both natural and synthetic) can be used in 
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A schematic of luciferin biosynthesis in luminescent higher fungi
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parallel, bioluminescence becomes an amazingly powerful tool 
laying the basis for multicolor imaging [3–6].

Bioluminescence in medicine

Firefly D-luciferin is the most popular substrate used in 
medical research. To react with luciferase, it needs adenosine 
triphosphate (ATP). Therefore, a bioluminescence signal can be 
obtained only in the presence of ATP. Obviously, this means that 
bioluminescence can be employed to accurately measure ATP 
concentrations. Because ATP is a universal energy carrier, its 
levels characterize cell’s metabolic potential and may be used 
to assess cytotoxicity of various drugs or their impact on cell 
proliferation [7]. In turn, bacterial luminescent systems strongly 
rely on the presence of such cofactors as flavin mononucleotide 
(FMN) and nicotinamide adenine dinucleotide hydride (NADH). 
This property is exploited by bioluminescence-based analytical 
methods developed to assay NAD(P)H, dehydrogenases and 
various metabolites, like malate, sorbitol and ethanol, whose 
oxidation is accompanied by the reduction of NAD+ to NADH. 
Used in combination, the firefly and bacterial luminescent 
systems become a tool for constructing metabolic maps of 
tumor tissues facilitating discovery of novel approaches to 
cancer therapy [8–10].

Indeed, the most accurate picture of cancer progression can 
be obtained using in vivo models. MRI, PET, radiography and 
similar imaging methods afford to investigate metastasis and 
angiogenesis of tumors as well as their respond to treatment, 
especially when it comes to deep tissues. But bioluminescent 
imaging is preferable to standard methods due to its high 
sensitivity; 3D-imaging is also possible [11].

Non-invasive imaging techniques normally employ 
luciferases of Photinus pyralis and Pyrophorus plagiophtalamus 
(for D-luciferin) and luciferases of Renilla reniformis and Gaussia 
princeps (for coelenterazine). Recently, the small NanoLuc 
luciferase has become increasingly popular; it is applied 
with synthetic luciferin called furimazine [12]. Luciferases 
are sometimes conjugated to fluorescent proteins and 
quantum dots to shift the signal to longer wavelenghthusing 
bioluminescence resonance energy transfer (BRET); this 
technique is applied to obtain images of deep tissues [13, 14].

The phenomenon of bioluminescence is also used in 
quantum dot-based photodynamic therapy of tumors. A 
photosensitizer with a powerful cytotoxic effect on cancer cells 
is delivered to tumors residing in deep tissues where it can 
be activated using BRET by photons emitted from a luciferase 
[15, 16].

Luminescent system of higher fungi is a new alternative 

An unfortunate disadvantage of luminescent systems used 
for bioimaging in cancer research is their dependence on 
luciferin from external sources that needs to be added before 
every experiment. The only autonomous bacterial luminescent 
system available nowadays is toxic for eukaryotes. Its key 
element is the luxCDABE operon. Initially, every attempt to 
express a bacterial luminescent system in eukaryotic cells 
resulted in failure. But after a massive structural rearrangement 
of the operon, bioluminescence in yeast and human cells 
became finally possible under the condition that luciferin should 
be added into the system externally [17]. In 2010 after the 
additional rearrangement of genes in the operon, human cells 
capable of autonomous luminescence were obtained [18].

At the moment, bacterial luminescent systems are not so 
readily implemented in eukaryotic cells. To incorporate such 
systems into a different organism, the same time-consuming 
manipulations with the operon will probably be needed, 
including rearrangement of regulatory and operon sequences 
and introduction of additional linker regions. That said, creating 
an autonomous luminescent system is still a problem.

For luciferins used in contemporary research, such as 
D-luciferin and coelenterazine, the problem seems to have no 
quick solution, because no clear picture of how these molecules 
are synthesized in the living organism is available. Recently 
a structure of luciferin of higher fungi (3-hydroxyhispidin) has 
been described [19] and its bioluminescence studied in depth 
[20]. A biosynthetic precursor of luciferin in fungi is caffeic acid. 
Luciferin is produced from it in two steps. First, hispidin is made 
from two caffeic acid derivatives, namely caffeoyl-CoA and 
malonyl-CoA, in the presence of polyketide synthase [21]; then, 
hispidin is converted to luciferin in the presence of hydroxylase 
(see the Figure).

Caffeic acid is a common secondary metabolite i plants. 
Transfer of genes coding the proteins involved in synthesis and 
bioluminescence of luciferin in fungi to plant cells seems to 
be more realistic solution than manipulations with prokaryotic 
bacterial genes. But we still believe that autonomously 
luminescent cells can be obtained not only from fungi but also 
from other organisms, such as yeast and mammals. Enzymes 
involved in a two-step process of caffeic acid biosynthesis from 
L-tyrosine are already known; they are phenylalanine ammonia 
lyase and cinnamate 4-hydroxylase. Also the genes encoding 
these enzymes are known (sam8 and sam5, respectively) [22]. 
Insertion of them into the cluster of genes responsible for fungal 
luminescence will help to create the first fully autonomous 
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bioluminescent system that can be used for bioimaging in 
eukaryotic organisms.

CONCLUSIONS

Bioluminescence imaging applicated in studiesof mechanisms 
of disease progression or response to treatment has a few 

advantages over other methods, one of them being incredibly 
high sensitivity. However, all bioluminescence systems share a 
common downside: to function, they require a luciferin substrate 
from external sources. Development of an autonomous 
luminescent system based on the gene cluster responsible for 
bioluminescence in higher fungi may offer a potential solution 
to this problem. 
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