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CONSERVED SEQUENCES OF GENES CODING FOR THE MULTIDRUG
RESISTANCE PUMP ACRAB-TOLC OF ESCHERICHIA COLI SUGGEST
THEIR INVOLVEMENT INTO PERMANENT CELL “CLEANING”
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Multidrug resistance pumps (MDR pumps) of bacteria confer protection against aggressive environmental factors. The genes
coding for MDR pumps are thought to be variable. They belong to the group of the so-called contingency genes, i.e are
necessary for bacterial adaptation to the changing environment. The aim of the present work was to establish how conserved
are the sequences of genes coding for MDR pumps. We analyzed the sequences of AcrA, AcrB and TolC proteins of different
Escherichia coli strains. Using sequence alignment tools, we demonstrated that strains originating in different countries and
cultured in the labs for a long time are amazingly conserved in terms of AcrAB-TolC sequences. They resemble housekeeping
genes, suggesting the involvement of the AcrAB-TolC pump into permanent “cleaning” of various biotic and abiotic agents.
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KOHCEPBATUBHOCTb NOCNEOOBATE/IbHOCTEW MrEHOB NOMIMb!
MHO>XECTBEHHOW JIEKAPCTBEHHON YCTONYMBOCTWU ACRAB-TOLC
ESCHERICHIA COLI KAK NMPN3HAK BOBJIEMEHHOCTHU

B MEPMAHEHTHYO «YBOPKY» BAKTEPUAJTbHOW KJNIETKU

M. B. Kapakoszoea' ™, . A. Hazapos?

' MeanKo-reHeTUHECK Hay HbI LieHTp, Mockea

2Hay4Ho-vcenenoBaTenbCKuin UHCTUTYT OM3MKO-XUMUHECKON Bronorim nmenn A. H. Benosepckoro,

MOCKOBCKUI FOCYAapCTBEHHDBIN YHMBEpcUTeT nmeHn M. B. JTomoHocosa, Mocksa
[ToMMbl MHOXXECTBEHHOW NeKapCTBEHHOM ycTon4mBocTr (MJTY) momMoraioT GakTepusM 3alpilaTbCsa OT HebnaronpusaTHOro
BO3MENCTBUS OKpYy>KatoLLiel cpedbl. CHMTAETCS, YTO reHbl, koaupyowme nomnbl MJTY, BaprabenbHbl M OTHOCATCH K Tak
Ha3bIBaEMbIM EHaM «POCKOLUW», T. €. MPeAHasHadeHbl 019 afanTaumn 6akTepuin K N3MEHEHWUIO OKPY>KatOLLMX YCIOBUIA.
Llenbto paboTbl 66110 MPOBEPUTE HACKOIBKO KOHCEPBATUBHBI MOCNEA0BATENBHOCTM FreHOB nomMnbl MITY. [nga aToro nposoaunm
aHanma nocnepoBatensHocTer 6enkoB AcrA, AcrB 1 TolC ong pa3nnyHbix 1abopaTopHbIX WTaMMOoB Escherichia coli. Metogom
BblpaBHMBaHWSA MOCAEeA0BaTENbHOCTEN ObIIO MOKa3aHO, YTO LWTaMMbl U3 PadHbIX CTPaH, KyNsTUBMPYEMbIE B labopaTopusix
yKe [OOSroe BPEMS, UMEIOT YAMBUTENbHYO KOHCEPBATMBHOCTbL MOCnefgoBatenbHocTen 6enkoB nommbl AcrAB-TolC. Ona
HamMoMMHaEeT KOHCEPBATUBHOCTb MEHOB «AOMAaLLIHEro Xo34anMcTeax», YTo, Mo-BUAVMOMY, FOBOPUT O BOBIEHEHHOCTM noMnbl MJTY
AcrAB-TolC B nepmaHeHTHyto «yBOpKy» KNETKN OT PasfnyHbIX BELLECTB BMOTUHECKOTO 1 aBMOTUHECKOTO MPOUCXOXKAEHNS.
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The gram-negative gammaproteobacterium Escherichia coli
(E. coli) was first discovered by Theodor Escherich in the stool
samples of healthy individuals in 1885 [1]. E. coli naturally
inhabits the lower intestines of warm-blooded species and is
an important object of research. Four strains of E. coli, including
K-12, B, W and C, are now used as model organisms. Strain
K-12 was first isolated at Stanford university in 1922 [2]. Strain
B was described by d’Herelle at the Pasteur Institute in Paris

in 1918 [3]. The other 2 strains are less common. Strain C was
discovered by Margaret Lieb in 1951 [4, 5], and strain W was
originally reported by Selman Waksman in 1943 [6]. Strains
comprising groups K-12 and B are the most widespread and
best known. Laboratory strains have “evolved” to lose some of
their properties, such as the ability to form biofilms on abiotic
surfaces, and therefore can be advantageously used in research
studies, especially for the discovery of novel antibiotics [7].
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The pressure of both natural and artificial selection existing in
laboratories has produced numerous derivatives of K-12 and
B that are now used all over the world (Table 1). Among the
derivatives of strain B are BL21 and BL21(DE3); DH5a, JM109,
W3110, XL-1 Blue, and MG1655 are examples of strain K-12
derivatives.

Discovery of novel antibiotics or their effective alternatives
is a pressing challenge. One of the most promising areas of
research is identification of multidrug resistance (MDR) pump
inhibitors. MDR pumps are responsible for removing antibiotics
from the bacterial cell. Studies of deletion mutants with
knocked-out genes coding for MDR pumps demonstrate that
minimum  effective inhibitory concentrations of antibiotics in
their case are several times lower than usual [8]. This may help
to reduce both treatment costs and the toxic effect of antibiotic
therapies on the patient. Although effects of MDR pumps on
antibacterial agents are actively studied, there is an extensive
list of objective factors preventing cross-study comparisons,
such as different genetic backgrounds of the strains. Even
for such closely related strains as W3110 and MG1655 [9],
the number of differences at genomic sites can be over 200,
impeding comparison. Because bacterial resistance to drugs
depends on the presence or absence of efflux pumps, we
hypothesized that E. coli strains with identical sequences of
MDR pumps might have comparable or equal resistance. To
check this supposition, we selected the AcrAB-TolC pump. We
aimed to compare sequences of AcrA, AcrB and TolC proteins
obtained from different laboratory strains of E. coli and to
study the associations between drug resistance and possible
mutations if such were present in a sequence.

METHODS
Selecting an object

For our study we selected a few K-12 strains: W3110, MG1655,
NEB 5-alpha, MDS42, GM4792, AG100, MC4100, DH10B,
ER3413, HMS174, BW2952, and BW25113, as well as strain
BL21(DES) from group B. Their acrA, acrB and to/C sequences
are known and stored in databases (Table 2).

Selecting a reference sequence

When selecting a reference sequence, we bore in mind a large
number of deletion mutants in E. coli K-12 BW25113. It is a
parent strain for the Keio collection, which comprises E. coli

Table 1. Geographic origin of E. coli strains used in this work
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strains with 3,985 deletions (of 4,288 total E. coli genes) [10].
Sequence AIN30961.1 was selected as a reference sequence
for AcrA; AIN30960.1, as a reference sequence for AcrB, and
AIN33386.1, as a reference sequence for TolC.

Sequence alignment

Sequences were analyzed using a standard local alignment
tool NCBI BLASTp, which allows comparison of multiple
alignments [11], and the STRING database [12]. Visual
representation of the results was done in NCBI MSA Viewer
[13]. Each protein sequence was aligned against its reference
sequence.

RESULTS

It is known that bacterial resistance can be a product of: 1)
accumulation of resistance genes in plasmids; 2) increased
expression of genes coding for MDR pumps; 3) gene
duplication; 4) accumulation of mutations [14, 15]. Increased
expression and accumulation of mutations in the genes
coding for MDR pumps can result in single nucleotide
polymorphisms (SNPs) in the amino acid sequences of
proteins. Therefore, bacterial resistance can be predicted by
sequence analysis.

Bacterial genes are subdivided into housekeeping genes,
which support vital functions of the cell, and contingency
genes, which play an important role in bacterial adaptation
to the changing environment. Housekeeping genes usually
have a low mutation rate, while contingency genes tend
to demonstrate a high mutation rate [16]. It is believed that
genes coding for multidrug efflux pumps are contingency
genes; therefore, the proteins they encode are expected to
have variable primary structures. Because laboratory strains
are usually subject to the pressure of natural selection induced
by various biocides and mutagens, the strains that have been
cultured in world laboratories for over 100 years, as well as
their derivatives, might be different in terms of their amino acid
polymorphisms. The strains compared in this work originate
from different countries and continents (Table 1), so we can
infer the presence of mutations in one of the AcrAB-TolC-
encoding genes.

However, the analysis of aligned sequences of AcrA
(Fig. 1), AcrB (Fig. 2) and TolC (Fig. 3) proteins (substrain
BW25113), those of strain K-12 (substrains W3110, MG1655,
NEB 5-alpha, MDS42, GM4792, AG100, MC4100, DH10B,

Strain Institution City, country
MG1655 University of Wisconsin Milwaukee, USA
W3110 Nara Institute of Science and Technology Ikoma, Japan
BL21(DE3) Korea Research Institute of Bioscience and Biotechnology Daejeon, South Korea
MDS42 Osaka University Osaka, Japan
MC4100 University of Kiel, Germany Kiel, Germany
BW25113 Universite de Sherbrooke, Canada Sherbrooke, Canada
ER3413 New England Biolabs Ipswich, USA
AG100 University of Exeter Exeter, UK
NEB 5-alpha New England Biolabs Ipswich, USA
HMS174 Austrian Centre of Industrial Biotechnology Graz, Austria
BW2952 Nankai University Nankai, China
DH10B University of Wisconsin-Madison Madison, USA
GM4792 Beijing Normal University Beijing, China
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Table 2. Accession numbers for the stored protein sequences of acrA, acrB and tolC genes

Substrain Strain AcrA AcrB TolC
MG1655 K-12 NP_414996.1 NP_414995.1 NP_417507.2
W3110 K-12 BAE76242.1 BAE76241.1 BAE77091.1
NEB 5-alpha K-12 AO068785.1 AO068784.1 AOO71261.1
MDS42 K-12 BAL37669.1 BAL37668.1 BAL39694.1
GM4792 K-12 AKK16793.1 AKK13611.1 AKK18828.1
AG100 K-12 CQR80062.1 CQR80061.1 CQR82466.1
MC4100 K-12 CDJ70932.1 CDJ70931.1 CDJ73817.1
DH10B K-12 ACB01590.1 ACB01589.1 ACB04120.1
ER3413 K-12 AlZ54314.1 AlZ54313.1 AlZ52829.1
HMS174 K-12 CDY55568.1 CDY55565.1 CDY61615.1
BW2952 K-12 ACR63806.1 ACR63808.1 ACR65687.1
BW25113 K-12 AIN30961.1 AIN30960.1 AIN33386.1
BL21(DE3) B ACT42313.1 ACT42312.1 ACT44711.1

ER3413, HMS174, and BW2952) and those of strain B (substrain
BL21(DE3)) reveals the absence of polymorphisms in all three
proteins constituting the AcrAB-TolC efflux pump, regardless
of whether the strain belongs to the derivatives of K-12 or B.

Considering the fact that E. coli mutation rate is ~1x10%
per genome per generation [17] or even higher (3-4x10° per
genome per generation) [18], we hypothesize that the AcrAB-
TolC pump sequence is conserved. Given the same sequence
coverage for all studied proteins (397 amino acid residues for
AcrA, 1049 amino acid residues for AcrB and 493 amino acid
residues for TolC), the sequence identity was 100%.

DISCUSSION

for the studied E. coli strains.

According to the currently existing classification, strains from
group B and K-12 belong to phylogroup A [19], which may
explain the similarity of amino acid sequences between all
three proteins but not their identity. Our findings allow us to
conclude the presence of a consensus sequence of a highly
conserved AcrAB-TolC ensemble. Thus, the selected protein
reference sequences AcrA (AIN30961.1 for AcrA, AIN30960.1
for AcrB and AIN33386.1 for TolC, respectively) are consensus

Organism

Escherichia coli BW25113

Escherichiz coli BL21{DE3)

Escherichia coli BW2952

Escherichia coli

Escherichia coli K-12

Escherichia coli str. K-12 s

Escherichia coli str. K-12 s..

Escherichia coli K-12

Escherichia coli K-12

Escherichia coli str. K-12 s..

Escherichia coli

Escherichiz coli str. K-12 s..

Sequence ID start 1 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 397 End
consensus 1 I mm——== 337
AIN30961.1 [x]1 I 397
ACT42313.1 ¥]1 =, 357
ACR63806.1 ¥[1 I —— 397
CDY55568.1 ¥]1 == 357
AIZ54314.1 ¥[1 I —— 397
ACB01590.1 ¥]1 I mmmm—= 357
CDJ70932.1 ¥]1 =, 357
CORBO062.1 ¥[1 I —— 397
AKK16793.1 ¥]1 I mmmm—= 357
BAL37660.1 ¥]1 =, 357
‘AQD68765.1 ¥[1 I —— 397
BAE76242.1 ¥]1 =, 397
NP_414996.1 [¥]1 I 97

Fig. 1. Alignment of AcrA sequences for strains K-12 and B against the reference AcrA sequence of substrain BW25113
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ACB01589.1 ¥]1 I 1,043
COI70931.1 v]1 I, 1,149
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BAL37668.1 v]1 I 1,049
ADO68784.1 ¥]1 I 1,049
BAE76241.1 ¥]1 I 1,043
NP_414995.1 v[1 . 1,049

Fig. 2. Alignment of AcrB sequences for strains K-12 and B against the reference AcrB sequence of substrain BW25113
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CQRB2466.1 ¥]1 = 433
AKK1B828.1 ¥]1 I mmmmm——= 453
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NP_417507.2 ¥[1 I mm—— 433

Fig. 3. Alignment of TolC sequences for strains K-12 and B against the reference TolC sequence of substrain BW25113

Escherichia coli str. K-12 5.
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The discovered sequences are consensus for all
representatives of group A and possibly other phylogroups,
including B1, B2, D, and E, which can facilitate normalization of
sequences against their consensus counterparts.

The absence of point mutations in the genes coding for
protein components of the AcrAB-TolC pump in all studied
strains is indicative of the strict selection control, as is the
case with housekeeping genes. Such control is particularly
important for the major multidrug efflux pump of E. coli (AcrAB-
TolC) responsible for removing benzalkonium chloride, ethidium
bromide, indole, hexane, antibiotics (erythromycin, ciprofloxacin,
etc.), rhodamine, berberine and also triphenylphosphonium
and its derivatives from the cell [20-21].

[t would be wrong to see genes coding for MDR pumps
as responsible for biocide resistance only. They have a role in
bacterial colonization and persistence [22], so it is not limited to
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defense against antibiotics. It appears that proteins produced
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from various biotic and abiotic agents and can be regarded
as housekeeping genes engaged in permanent cell “cleaning”,
unlike contingency genes that get involved only at certain
times.

CONCLUSION

Our findings suggest a unique role of the AcrAB-TolC
multidrug resistance pump in E. coli. The protein sequence
of AcrAB-TolC has turned to be surprisingly conserved. This
provides a fresh look at AcrAB-TolC from a different angle:
this pump ensures permanent protection against aggressive
environment, determines bacterial resistance to antibiotics or
their alternatives and even ensures bacterial survival.
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