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PERSISTENCE OF ONCOLYTIC COXSACKIE VIRUS A7 IN SUBCUTANEOUS
HUMAN GLIOBLASTOMA XENOGRAFTS IN MICE IN THE CONTEXT OF

EXPERIMENTAL THERAPY
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Natural non-pathogenic and vaccine strains of human enteroviruses are currently considered as promising agents capable of
treating various kinds of cancer, including glioblastorma multiforme, the most aggressive brain tumor with so far no effective
therapy. Enteroviruses can selectively replicate in cancer cells and cause tumor lysis. However, the ability of enteroviruses to
persist in tumor tissue for a long period of time and to replicate in several successive cycles while spreading from cell to cell
remains largely unclear. This study aimed to determine the possibility of completely destroying subcutaneous mouse xenografts
of human glioblastomas through a single intravenous administration of virus-carrying peripheral blood leukocytes, as well as to
find out the duration of persistence of the virus in the body of experimental animals in the context of viral therapy. Neurospheres
were formed in vitro by incubating fragments of patients-derived glioblastomas and used to initiate subcutaneous tumors
in immunodeficient mice. It was established that human peripheral blood leukocytes infected in vitro can effectively deliver
Coxsackie A7 virus to the tumor cells. A single injection of 2 x 10* virus-infected leukocytes led to a gradual regression of tumors,
while the virus presence was constantly detectable in the blood of mice, up to the complete regression of the tumors. The study
allows to make the conclusion that blood leukocytes can effectively deliver Coxsackie A7 virus to the tumor. In the absence of a
full-fledged immune response in mice, the viruses persist in tumors leading to their complete destruction.
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NMEPCUCTUPOBAHUME OHKOJINTUYECKOIO SHTEPOBUPYCA KOKCAKW A7
B NMOAKO>XHbIX MbILUNHbIX KCEHOTPAHCIJIAHTATAX TNTMOBJTACTOM
YEJIOBEKA INPUN 3KCIMNEPUMEHTAJIbHOW TEPATNA
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[MprpoaHble HenaToreHHble 1 BaKLWHHbIE LITaMMbl SHTEPOBMPYCOB YeroBeka B HACTOSLLIEE BPEMST PACCMapmBaOTCS B Ka4ecTBe
MEePCMEKTUBHBIX CPEACTB AN NEYEHUs OHKOOMMHECKMX 3ab0neBaHuii, B TOM YMCie MyNsTUOPMHON rMo6nacTtoMbl —
Hanbonee arpeCCcrBHON OMyXOsi FONOBHOMO MO3ra, At KOTOPOW He CyLLECTBYET 3deEKTUBHbBIX CPEACTB Tepani. SHTEPOBMPYChI
MOIMyT M3bUpaTenbHO PENNLIMPOBATLCS B KIETKaxX OMyxonu, Bbi3biBad WX mauc. OgHako CMOCOOHOCTb 3HTEPOBMPYCOB
ONUTENBHO MPUCYTCTBOBATb B OMyXOMEBON TKaHW M COBepLUaTb HECKOMbKO MOCNefoBaTeNbHbIX LIMKIOB penmkaumm ¢
pacnpOCTPaHEHNEM OT KNETKM K KIIETKE MI0X0 U3ydeHa. Llenbio nccnenosaHns Obino ycTaHOBAEHWE BO3MOXHOCTI MOSTHOMO
YHUHTOXKEHNS MOOKOXHBIX KCEHOTPAHCMIaHTAaTOB MMOBNacToOM YenoBeka npu OAHOKPATHOM BBEAEHUM BUPYCa BHYTPUBEHHOM
[OOCTaBKOW C MOMOLLIbHO NENKOLMTOB NepUdepHeckon KpoBHY, a Takke OMTENbHOCTb MPUCYTCTBUSA (MEPCUCTUPOBAHNS) BUpYCa
B OpraHn3me aKCrnepyMeHTabHbIX XXMBOTHbIX B MPOLIECCE BUPYCHOM Tepanun. B ka4ecTBe ornyxoneBbix KNETOK NCMONb30Bav
Herpocdepbl, NOyYeHHbIE in Vitro nyTeM MHKybaumn hparMeHTOB YAaeHHbIX Y MauyMeHTOB OMyxofien. YCTaHOBMEHO, YTO
NEeNKOUUTLI NepUdepn1eCKONKPOBM HenoBeka, NHMULIMPOBAHHbIE in Vitro, CNOCOBHBI OCYLLIECTBNATL S(DMEKTNBHYIO AOCTaBKY
B KNETKM onyxonu Bupyca Kokcaku A7. OgHokpaTHoe BBeaeHve 2 x 10 3aparkeHHbIX BUPYCOM NIEMKOLMTOB MPUBOAMIIO K
MOCTENEHHOWM perpeccum onyxonen Npu NOCTOAHHO ONpPedensAtoLEMCA NPUCYTCTBUN BUPYCa B KPOBW MbILLW. [0 pedynstatam
1CccnenoBaHnsa caenaH BblBO[, YTO AOCTaBka aHTepoBMpyca Kokcaki A7 B OMyX0sb MOXET ObiTb 9(D(EKTMBHO OCYLLIECTBNEHA
C MOMOLLBIO JIEMKOLUMTOB KPOBW. B OTCYTCTBME MOAHOLIEHHOrO MMMYHHOrO OTBETa B OMyXONaX Y Mbllen HabnogaeTca
NepCUCTUPOBAHME BMPYCOB, 3aKaHYMBAOLLEECH VX MOMHBIM YHUHTOXKEHNEM.
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Therapy of brain tumors, especially of glioblastoma multiforme
(GBM) still remains an unresolved problem [1, 2]. The search
for new alternative approaches to their treatment is of particular
importance. The main problem lies in the resistance of tumor-
initiating stem cells to therapy, which inevitably leads to relapses.
Many oncolytic viruses can effectively destroy glioblastoma stem
cells and prevent the relapses [3-8]. As the tumor develops,
its cells acquire a number of characteristic properties that can
serve as specific targets for therapy [9]. Besides, they lose many
specific functions the cells serve in a multicellular organism
[10-12]. One of those functions is protection from viruses [13-15].
Infected with viruses, tumor cells generally neither are capable
of inducing type 1 interferons, nor acquire immunity to reinfection
with viruses after interferon treatment [16-20]. This is why tumor
cells display the increased sensitivity to infection by many different
viruses, and justify the development of oncolytic viruses for
cancer therapy [21-24]. Oncolytic viruses not only selectively
infect and destroy cancer cells but also significantly activate
antitumor immunity and modify tumor microenvironment. They
stimulate both innate and adaptive immunity, which results in an
extended antitumor effect even after the virus is no longer present in
the tumor [25-28]. Various oncolytic viruses make use of the above
mechanisms in their own way. It is convenient to study direct viral
oncolysis caused by direct replication of viruses in a model of tumor
xenografts implanted either to immune deficient athymic mice [29]
or to mice with severe combined immunodeficiency (SCID) [30].
These models also allow refining virus delivery approaches. Virus
administration should result in the successful infection of some
tumor cells with subsequent initiation of viral replication cycles,
release of virus progeny and further expansion of viral infection to
remaining tumor cells located in the same or distant tumor nodes.
The process is easily launched once the virus is directly injected to
the virus—sensitive tumor. However, in most cases of metastatic
cancer tumor sites are not accessible to such injections. Systemic
administration of the virus through intravenous or intramuscular
injections is also often ineffective, as the virus quickly leaves the
circulation being absorbed by endothelial cells, or destroyed by
some nonspecific protective factors in the blood. A promising
alternative to such systemic delivery is the use of virus-sensitive
carrier cells, infected in vitro and introduced to the bloodstream
[31=33]. In such cells, the virus replicates as they circulate through
the body, and then the virus particles are released in distant parts
of the body, including tumors. In this study, we used the model
of subcutaneous human glioblastoma tumor xenografts. Immune
deficient mice were injected with cultured neurospheres derived
from glioblastoma tumors of two patients. Neurospheres are dense
clusters of cells developed through the culturing of tumor explants
under conditions preventing the attachment of cells to culture
plates. The culturing takes place in a special medium containing
epidermal growth factor and fibroblast growth factor (EGF, bFGF,
respectively) [34, 35]. Like other spheroids derived from human
tumors, neurospheres are rich in tumor-initiating stem cells [36]
and therefore have increased tumorigenisity [37, 38]. This study
aimed to refine the delivery of oncolytic enteroviruses with the
help of peripheral blood leukocytes in the model of subcutaneous
tumor xenografts in mice, as well as to establish the duration of
persistence of the virus in the body of experimental animals in the
context of viral therapy.

METHODS
Cells culture for viruses titration

The Vero cell culture (immortalized kidney cells of the African
green monkey) was grown in DMEM medium (PanEco, Russia)

supplemented with 10% fetal bovine serum (FBS), 100 mg/ml
penicilin and 100 mg/ml streptomycin. The cells were grown
in 10 cm plastic culture dishes in a humidified atmosphere
containing 5% CO, at a temperature of 37 °C; then, they were
dispersed every 3 days in the ratio of 1:4-1:6.

Neurospheric tumor-forming glioblastoma cell cultures

Obtaining cell cultures from patients with glioblastoma (GM-3564
and GM-3876) has been described previously [39]. To boost
tumor development, we used SCID/Beige immunodeficient
mice as experimental animals (obtained from the Novosibirsk
SPF vivarium and maintained in the laboratory); the mice
received subcutaneous administration of neurospheres. The
glioblastomma neurospheres used were only passed twice
and kept at the nitrogen liquification temperature. They were
defrosted immediately before the start of the experiments.
The medium they were plated on was DMEM + F12 medium
(PanEco, Russia) containing 20 ng/ml EGF and 10 ng/ml bFGF,
and placed in an incubator with 5% CO, at 37 °C. When the
neurospheres developed (in 7-10 days), they were washed twice
with PBS, counted, carefully pipetted until the disappearance
of large cell aggregates and injected subcutaneously into SCID/
Beige mice, 500 spheroids per insertion point. The tumors
appeared in 3 weeks. The tumors about 10 mm in diameter
were excised, dispersed through a sterile nylon mesh with a
pore diameter of 50 pum, treated with collagenase (PanEco,
Moscow) to obtain a cell suspension, washed twice with PBS;
the resulting suspension was subcutaneously administered to
SCID/Beige mice in the amount of 2 x 10° cells per injection
point, the goal being to obtain tumors to test the oncolytic
activity of the virus. Preliminary adaptation of the neurospheres
to growth as tumors in mice resulted in boosted tumorigenicity
and an increase in the number of tumors developed after
repeated administration.

Oncolytic virus strain

We used the LEV8 strain of Coxsackie A7 enterovirus [40, 41] that
can effectively replicate in GM-3564 and GIM-3876 cells [39]. Titration
of the infectious activity of viral preparations was done with the help
of the final dilution method and Vero cell culture using 96-well plates.

Delivering the virus with peripheral blood leukocytes

The peripheral blood leukocyte fraction was obtained from the
freshly harvested heparinized human blood by centrifugation in
a Ficoll-Paque solution (PanEco, Russia) following the standard
protocol [42]. The leukocytes, washed twice in DMEM medium,
were counted and a suspension with a density of 10° cells/ml
prepared. The suspension was incubated with Coxsackie A7
virus (10 infectious units per cell) at 37 °C for 1 hour. Then the
leukocytes were washed 3 times with 10 ml of PSB (0.14 M
NaCl) and centrifuged at 800 g for 5 min. The infected leukocytes
(2 x 10* cells) were injected into the the tail vein of SCID/Beige
mice in a volume of 0.1 ml; they bore about 400-600 pl to
the tumor. The tumor size was measured every third day. To
register presence of the virus in the mice's blood, we took a
drop of it from the tail vein and titrated on Vero cells applying
the final serial dilutions method and using 96-well plates.

RESULTS

Earlier, we found that GM-3564 and GM-3876 cell cultures
obtained from the tumor material of two glioblastoma patients
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are highly sensitive to the Coxsackie A7 virus [39]. In the context
of this study, we used this strain to find out if it is possible to
deliver it to the tumor with the help of a cell carrier, as well
as to determine if the virus can persist for a long period of
time and thus make the oncolytic effect stable. To achieve the
goals set, we implanted GM-3564 and GM-3876 neurospheric
cultures xenografts subcutaneously to SCID/Beige mice. After
subcutaneous administration of the neurospheres, the tumors
grew to 400-600 pl in 10 days. We divided the mice into 2
groups of 10 animals each for our experiments, one for each
type of tumor cells (total of 4 groups): one group received
virus-infected leukocytes injections (tail vein), another — non-
infected leukocytes (control). Figure 1 shows the dynamics
of the tumor size changes (in mm?®); the measurements were
taken on every third day for 27 days. In the control group,
which had non-infected leukocytes injected to the tail vein, the
tumors continued to grow; the mice were euthanized when
the tumors in them reached the size of 1500 mm?. Generally,
it happened sometime between days 9 and 15 after injection
of the leukocytes. In the treatment groups, where the mice
received leukocytes infected with Coxsackie A7 virus (injected
into the tail vein), the tumors continued to grow for 3 more
days and then rapidly collapsed. The effect was the same for
both GM-3564 and GM-3876 cells. In 18-21 days after the
injections, it was already impossible to measure the tumors;
only a subtle subcutaneous scar tissue was found in their
place. At the same time, the virus titer was detected in the
mice's blood every three days (Table).

The first encounter of the virus in the blood of mice
occurred on the 3rd day after the injection; on the 6th day, its
quantity peaked and then began to decrease, same as the size
of the tumor. From days 18-21 and on, the virus could not be
registered anymore and the mice were practically free from tumors.

DISCUSSION

We used the human glioblastoma xenografts model in SCID/
Beige line mice and found that it is possible to deliver the
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oncolytic Coxsacki A7 virus to the tumor in human peripheral
blood leukocytes infected in vitro and injected into the tail
vein. This method of administration made the virus detectable
in blood on the 3rd day and ensured its presence there until
the tumors disappeared. Thus, the virus persisted in mice as
long as there were virus-sensitive tumor cells. Destruction of
such cells lead to disappearance of the virus. Previously, we
have observed extended persistence of type 1 poliovirus in
mice with A172 glioblastoma xenografts; in that experiment,
tumors and virus disappeared from the mice's organisms
simultaneously [43]. However, in contrast to the present study
that research implied injecting mice intravenously with large
doses of free virus. The Coxsackie A7 virus enters cells with
the help of LIMP-2 protein encoded by SCARB2 gene [44].
LIMP-2 expresses on the surface of many types of human
cells, including leukocytes; it seems that the protein contributes
to the spread of virus throughout the body and participates
in the expansion of enterovirus infections caused by some
pathogenic strains of Coxsackie A. The virus delivery method
we applied has a number of advantages over systemic
administration of free virions: being inside the cell, the virus is
protected from antibodies and other factors that can inactivate
it. We presume that the virus is capable of a limited replication
within leukocytes, which accounts for its appearance in the
remote areas of the body, including tumors. Also, the delivery
with leukocytes allows significant reduction of the initial amount
of virus needed for therapy. Further studies should be aimed
at finding out the applicability of this method to treatment of
cancer patients.

CONCLUSIONS

We have found that intravenous injection of leukocytes carrying
an oncolytic strain of the Coxsackie A7 virus to immunodeficient
SCID/Beige line mice leads to a rapid collapse and subsequent
disappearance of subcutaneous tumor xenografts obtained
from glioblastoma cells of two different patients. The virus
actively multiplied in mice while there were virus-sensitive tumor
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Fig. 1. Size of the GM-3564 and GM-3876 glioblastoma subcutaneous tumor xenografts: dynamics of change, control (uninfected human leukocytes) and treatment
(leukocytes carrying Coxsackie A7 virus) groups. A — leukocytes injected to mice with GM-3564 tumors; A — infected leukocytes injected to mice with GM-3564
tumors ; O — leukocytes injected to mice with GM-3876 tumors; @ — infected leukocytes injected to mice with GM-3876 tumors

Table. Coxsackie A7 virus titers found in the blood of the treatment group mice 0-27 days after the injection of virus-infected leukocytes

Days 0 3 6 9 12 15 18 21 24 27
GM-3564 n. 1.5 x 107 1.7 x10¢ 3.2x10° 2.6 x10° 6 x 10? 1.9 x10% n. n. n
GM-3876 n. n. 1.0x 102 52 x10° 5x10° 1.2x10° 2.6 x10? n. n. n

Note: n. — virus not detected.
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cells in their bodies. The results of this study show that even
in the absence of T-cell immunity, oncolytic enterovirus can
destroy glioblastoma tumors in athymic mice through direct
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