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СРАВНЕНИЕ РЕЖИМОВ ВОЗБУЖДЕНИЯ ФЛУОРЕСЦЕНЦИИ 
ПОЛУПРОВОДНИКОВЫХ КВАНТОВЫХ ТОЧЕК НА ОСНОВЕ 
СЕЛЕНИДА КАДМИЯ ДЛЯ БИОМЕДИЦИНСКИХ ПРИЛОЖЕНИЙ

В настоящее время, флуоресцентная спектроскопия — это мощный инструмент, используемый в биологических и 
медицинских прикладных исследованиях. Одним из перспективных типов люминесцентных меток для одновременного 
обнаружения различных биологических агентов в одной пробе являются коллоидные полупроводниковые квантовые 
точки. Важным направлением совершенствования методики их применения является подбор оптимального режима 
возбуждения и регистрации флуоресцентного сигнала. Таким образом, целью настоящей работы было получение 
математического выражения для оценки отношения сигнал/шум в случае импульсного и модуляциоонго режимов 
возбуждения. Представлены результаты теоретического сравнения данных режимов возбуждения для регистрации 
флуоресцентного сигнала от ультра-малых количеств квантовых точек. Показано, что в случае применения квантовых 
точек CdSe/ZnS в условиях фоновой засветки с мощностью свыше 1 мкВт и временем накопления полезного сигнала 
свыше 100 мс для достижения высокой обнаружительной способности предпочтительнее использовать модуляционный 
режим возбуждения.
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COMPARISON OF FLUORESCENCE EXCITATION MODES FOR CDSE 
SEMI-CONDUCTOR QUANTUM DOTS USED IN MEDICAL RESEARCH

Fluorescence spectroscopy is a powerful tool used in applied biological and medical research. Colloid semi-conductor 
quantum dots are promising fluorescent tags for simultaneous detection of different biopathogens. The techniques employing 
these tags can be improved by selecting the optimal modes for signal excitation and detection. The aim of the present work 
was to derive a mathematical expression to describe the signal-to-noise ratios in the pulsed and modulated excitation modes. 
Below, we compare these two modes of fluorescence excitation in ultralow quantities of quantum dots. We demonstrate that 
modulated excitation should be preferred for CdSe/ZnS quantum dots given that signal accumulation time is over 100 mc and 
the photosensor is exposed to background light of  > 1 µW.
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Today, fluorescence-based analytical techniques are widely 
used in applied biological and medical research to study protein 
structures [1–3], diagnose cancer [4–8] and autoimmune 
disorders [9], detect and classify biopathogens and toxins 
[10]. The majority of these techniques rely on fluorescence 
tags, among which semi-conductor quantum dots hold the 
highest potential [8, 11–13]. Unlike conventional organic dyes, 

quantum dots have broad absorption spectra [14, 15], exhibit 
high quantum yield [16] and record-breaking photostability 
[17]. Besides, the wavelength of the fluorescence emitted from 
quantum dots depends on their size, so one can «tune» the 
fluorescence spectra by varying the size of nanocrystals [16, 18].

Sometimes, as is the case with detecting low pathogen 
concentrations or screening for cancer and autoimmune 
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METHODS

In this section we derive mathematical expressions to describe 
the signal-to-noise ratio using a standard noise model, write 
them in a convenient form for further comparison and use them 
for the analysis of different fluorophore excitation modes. The 
average power of excitation light was selected as a reference 
condition allowing us to compare the pulsed and modulated 
excitation modes. 

The output of the majority of Si PIN photodiode 
photosensors is voltage [33–36], whereas the photodiode itself 
is a source of current [37]. To convert current to voltage, such 
photodetectors are equipped with a transimpedance amplifier 
[38] set up for a particular task.

The main characteristics of a transimpedance amplifier are 
transimpedance resistance R

т
 and the upper bound frequency 

⨍
p
. The following statement is true for the signal with a frequency 

below ⨍
p
:

 

where U
s
 is the output voltage, P

s
 is the power of the 

fluorescence signal, S is the sensitivity of the photodiode. The 
noise of the amplifier can be described in terms of the output 
voltage noise density of the amplifier u

na
. However, in practice 

NEP (the noise equivalent power of the optical signal) is often 
used for this purpose [37]:  

                              

Clearly, both NEP and the detection threshold of the 
photosensor are directly dependent on the noise characteristics 
of the amplifier and the operating mode.

Of note, the noise of a multistage amplifier is determined 
by the noise of  the first stage [39]; the subsequent stages 
only proportionally increase the amplitude of both signal and 
noise and do not affect their ratio. This phenomenon allows 
us to use a single-stage amplifier as a model for analyzing 
noise characteristics. In transimpedance amplifiers the primary 
source of noise is the thermal noise of feedback resistance R

f
 

which corresponds to transimpedance resistance R
т
. Using the 

standard equation for thermal noise [40], one can write:

where k is the Boltzmann constant and T is resistance 
temperature.

From the expression (2) we can deduce that an increase 
in feedback resistance improves noise characteristics of the 
photosensor, but because of the parasitic capacitance C

p
 of 

the photodiode [37] the upper bound frequency ⨍
p
 decreases. 

Considering the relationship between R
т
 and C

p
, the NEP 

equation can be rewritten as follows: 

The equation (3) means that the simplest way to detect an 
ultralow-intensity fluorescence signal is to continuously excite 
the studied sample and use a photosensor equipped with a 
direct current amplifier. This approach, however, is hardly ever 
implemented because of the sources of additional low-frequency 
noise ΔNEP(⨍), such as flicker noise [29, 40, 41], popcorn noise 
[40] and power fluctuations of external light sources [42–45]. 
At frequencies below ~1 kHz, the contribution of these noise 
sources can considerably exceed thermal noise density and 
outweigh the advantages of a low-frequency photosensor [29, 

U
s 
= P

s 
• S •  R

T

NEP
  
= [    ]u

na
W

R
T 

• S Hz . (1)√

disorders, it is necessary to record ultralow-intensity fluorescence 
[10]. Indeed, the best state-of-the-art photosensors sensitive 
to the visible light spectrum are capable of detecting single 
photons [10]. Such devices, however, only operate at very low 
temperatures [19, 20] and are ultrasensitive to background light 
[20]. These factors combined with high costs limit the use of 
photodetectors to specific laboratory equipment or commercial 
premium-quality machines [21–25]. Still, applied research 
cannot do without highly sensitive, small, cheap, background-
noise-resistant photodetectors for fluorescence-based assays 
involving multiple measurements of the same type.

Such photodetectors can be constructed from standard 
silicon PIN photodiodes. To reduce background light interfering 
with their performance, pulsed [26, 27] and modulated [28–30] 
excitation modes can be used for luminophore excitation. In 
the first approach, luminescence induced by pulsed excitation 
is detected over a short time interval comparable to the 
excited-state lifetime of the luminophore. If the intensity of 
the excitation pulse is chosen properly, the amplitude peak of 
the luminescence signal will significantly exceed the level of 
background light. This approach, however, has a drawback: 
it relies on the use of broadband photodetectors, broadband 
recording units and expensive laser sources of excitation 
radiation with a pulse duration ranging from 10 ns to tens of 
picoseconds, depending on the selected fluorophore.

In the second approach, the effect of background light 
is neutralized by reaching a high modulation frequency of 
excitation light that exceeds a typical fluctuation frequency 
of background light. Usually, the modulation frequency falls 
within a range of 10 to 100 kHz [31, 32]. By applying the 
Fourier transform at the modulation frequency during signal 
processing, one can isolate and discard the signal resulting 
from low-frequency power fluctuations of background light. 

To create a photosensor exploiting the principle of 
modulated excitation, narrowband or lock-in amplifiers, the 
Fourier transform of the emitted luminescence signal or their 
combination are employed [31, 32]. Each of these approaches 
has its own specifics. Although the use of a broadband 
amplifier necessitates a broad dynamic range and a good ADC 
(analog-to-digital converter) resolution for the Fourier transform 
to be applied, the latter is instrumental in eliciting a plethora of 
information about the recorded signal as possible. Narrowband 
amplifiers do not impose such strict requirements on the ADC 
but their architecture is more complex.

On the whole, the technique based on the modulation of 
excitation light requires a simpler laser source than the pulsed-
based one. Still, it is not perfect: one of the most obvious 
downsides to it is long signal accumulation time not needed for 
pulsed excitation.

Considering the above said, the optimal choice of a technique 
for detecting low-intensity luminescence is determined by the 
photo- and physical properties of the selected luminophore 
and the level of background light. Devices for luminescence 
analysis must be fast, cheap and have low power consumption.

The aim of this work was to carry out a comprehensive 
comparison of techniques exploiting pulsed and modulated 
signals to excite low-intensity luminescence in the visible part
of the light spectrum and detect it using PIN photodiode 
photosensors. The average power of excitation light was 
selected as a reference condition. We hope that the obtained 
data will aid in selecting the optimal system for a luminescence 
assay based on the excited-state lifetime of the luminophore 
and the level of background light. In this work we also 
talk about the choice of optimal modulation frequency of 
excitation light.

NEP
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46]. Therefore, pulsed and modulated excitation modes are 
used instead, reducing the effect of additional noise sources 
[29]. Each of these approaches, however, has its own specifics. 

For a broadband amplifier unexposed to background light 
and a signal induced by modulated excitation, the signal-to-
noise ratio can be described by the following equation:

           

where <P
lum

> is the average power of the fluorescence signal, 
P

n
 is the noise power, ⨍

m
 is the modulation frequency of 

excitation light. Presumably, the inverse duty ratio of excitation 
pulses equals 2 and the upper bound frequency of the amplifier 
fp equals the modulation frequency or slightly exceeds it.

At the same time, the photosensor operating in the 
modulated excitation mode can only have a narrow gain 
bandwidth Δ⨍

p
 near the modulation frequency ⨍

p
. So, to 

use modulated excitation, physical or programmable lock-in 
amplification [32], narrowband amplifiers [47] or filters [47] are 

(              )(                    )
S

S
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√

2πκTC
p

√⨍
m

 
2πκTC

p
n√Δ⨍

p
 , (4)

, (5)

required; alternatively, multiple measurements can be taken 
to average the signal [47]. These measures can help to avoid 
the contribution of ΔNEP(⨍) to the total noise. If ⨍

m
 = n • Δ⨍p, 

where n represents the number of periods needed to average 
the signal, a photodetector with a narrowband amplifier can be 
described by the following equation: 

  

Another challenge of this approach is the choice of an optimal 
modulation frequency of excitation light. From (5) it is clear 
that one should use the lowest frequency possible allowed 
by the operational speed of the device. At frequencies below 
~1 kHz the contribution of additional noises increases, rendering 
work in this mode useless. The presence of background light 
necessitates additional analysis with due account of the spectral 
density of external light fluctuations at various frequencies. 

The pulsed excitation mode relies on the phenomenon of 
the peak power of the fluorescence signal P

lum 
= <P

lum
> • d, 

Fig. 1. Dependency of the signal-to-noise ratio of the receiver on the background noise power in the modulated excitation mode (1) and pulsed excitation mode (2) for 
a luminophore with an excited-state lifetime of 1 ns (2), 10 ns (3), and 100 ns (4). A. Signal accumulation times is 1 ms, the average power of the fluorescent signal is 
1 nW, the typical frequency of background fluctuations is 100 Hz. B. Signal accumulation times is 1,000 ms, the average power of the fluorescent signal is 1 nW, the 
typical frequency of background fluctuations is 100 Hz
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where d is the inverse duty cycle of excitation pulses. The pulse 
repetition rate ⨍

ex
 is determined by the requirements for the 

operational speed of the device and is limited by the excited-
state lifetime τ

lum
 of the used fluorophore. If the task is to obtain 

information about τ
lum

, then the duration of the excitation pulse 
τ

ex
 must be significantly lower than τ

lum
. But generally, it can 

be comparable to τ
lum

, mitigating requirements for the upper 
bound frequency, which in this case is ⨍

p
 ≈ 1/τ

lum
 or ⨍

p
 = d • ⨍

ex
.

The excited-state lifetime of such fluorophores as organic 
dyes and quantum dots normally varies from 1 to 100 ns [48, 
49]. Therefore, the upper bound frequency of the photosensor 
must fall within an interval between ~0.01 and 1 GHz. Under 
such conditions, the contribution of additional low-frequency 
noises ΔNEP(⨍) is negligible in comparison with the total 
thermal noise of the amplifier. With that in mind, NEP and the 
signal-to-noise ratio of the photosensor operating in the pulsed-
modulation mode can be described by the following equations: 

 

To account for the effects of background light with the 
average power P

bg
, the obtained formulas have to be corrected. 

In the modulated excitation mode, the effect of background 
light is indirect and manifests as an increase in shot noise. 
In the pulsed-excitation mode, the effect of background light 
shows as fluctuations of external illumination with the typical 
borderline frequency ⨍

bg
. Considering that, the signal-to-noise 

ratio in both excitation modes can be written as

The formulas (7) and (8) allow adequate comparison of signal-
to-noise ratios in pulsed and modulated excitation modes 
at the same operational speed of the device and the same 
average power of the fluorescence signal (and, therefore, the 
same average power of excitation light). 

Fig. 2. Dependency of the signal-to-noise ratio of the receiver on the background noise power in the modulated excitation mode (1) and pulsed excitation mode (2) 
at typical frequencies of the background power fluctuation of 10 Hz (1), 100 Hz (2), and 1,000 Hz (4). A. Signal accumulation times is 1 ms, the average power of the 
fluorescent signal is 1 nW, the excited-state lifetime of the luminophore is 5 ns. B. Signal accumulation times is 1,000 ms, the average power of the fluorescent signal 
is 1 nW, the excited-state lifetime of the luminophore is 5 ns
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RESULTS
 
Using the equations (7) and (8), we have analyzed the 
dependencies of the signal-to-noise ratio on different 
parameters, including the power and frequency of background 
light fluctuations, the operational speed of the photodetector and 
the excited-state lifetime of the fluorophore. For convenience, 
we constructed the curves shown in the figures below. Fig. 1A 
and 1B feature curves representing dependencies of the 
signal-to-noise ratio on the power of background light for 
luminophores with different excited-state lifetimes. Figures 2A 
and 2B show curves representing dependencies of the signal-
to-noise ratio on the power of background light at various 
typical frequencies of its fluctuations. 

DISCUSSION

In the absence of background light, pulsed excitation of the 
fluorophore is preferable (Fig. 1A and 1B). In the presence of 
background light, pulsed excitation still should be opted for 
when fast results are needed and the selected fluorophore has 
an excited-state lifetime of less than 1 ns. 

At the same time, as the power of background light 
increases, the signal-to-noise ratio declines more slowly if pulse 
excitation is applied. Also, it is important to remember that the 
signal-to- noise ratio depends both on the excited-state lifetime 
of the fluorophore and the typical fluctuation frequencies of 
the background light power. Thus, for pulsed excitation the 
signal-to-noise ratio is lower than for modulated excitation if 
the excited-state lifetime of the luminophore is over 100 ns. A 

similar situation is observed when the average background light 
power exceeds ~ 1 µW and its typical fluctuation frequency is 
over 100 Hz. Such conditions occur when scanning systems 
or artificial light sources are used [42, 43, 50], especially LED 
lamps [46]. The detection threshold of a photosensor operating 
in the modulated excitation mode at a properly selected 
modulation frequency will not depend on the excited-state 
lifetime of the selected luminophore or fluctuation frequencies 
of the background light power (Fig. 2A and 2B). 

The excited-state lifetime of quantum dots normally 
falls within the range from 10 to 100 ns. Thus, modulated 
excitation is a better choice if the task is to detect the ultralow 
quantities of semi-conductor quantum dots in the presence 
of background light with an average power of > 1 µW given 
that signal accumulation time is least 100 ms. Moreover, the 
sources of excitation light for the modulation-based method 
are cheaper and simpler in architecture than those generating 
very short (nano/pico) pulsed signals. 

CONCLUSIONS

We have derived a mathematical expression for computing 
the signal-to-noise ratio for Si PIN photodiode photosensors 
operating in the pulsed and modulated excitation modes used 
for the induction of luminescence in the visible light spectra in 
the presence of background light. We have demonstrated that 
modulated excitation is preferable for luminescent CdSe/ZnS 
semi-conductor quantum dots given that signal accumulation 
time is at least 100 ms and the device is exposed to background 
light  > 1 µW. 
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