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IDENTIFICATION OF MICROORGANISMS BY FOURIER-TRANSFORM
INFRARED SPECTROSCOPY

Suntsova AYu', Guliev RR', Popov DA?, Vostrikova TYu?, Dubodelov DV3, Shchegolikhin AN', Laypanov BK®, Priputnevich TV?,
Shevelev AB"*® Kurochkin IN'

" Emanuel Institute of Biochemical Physics, Moscow

2 Bakulev National Medical Research Center of Cardiovascular Surgery, Moscow

8 Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow

4 Vavilov Institute of General Genetics, Moscow

5 Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow

The need for novel techniques of rapid identification of pathogenic microorganisms arises from the massive spread of drug-
resistant nosocomial strains and the emergence of centers for biohazard control. Fourier-transform infrared spectroscopy is
a promising alternative to mass spectrometry as it is cost-effective, fast and suitable for field use. The aim of this work was to
propose an algorithm for the identification of microorganisms in pure cultures based on the analysis of their Fourier transform
infrared spectra. The algorithm is based on the automated principal component analysis of infrared spectra. Unlike its analogues
described in the literature, the algorithm is capable of identifying bacteria regardless of the culture medium or growth phase.
The training sample included the most prevalent causative agents of infections and sepsis in humans: Staphylococcus aureus
(n = 67), Enterococcus faecalis (n = 10), Enterococcus faecium (n = 10), Klebsiella pneumoniae (n = 10), Escherichia coli (n = 10),
Serratia marcescens (n = 10), Enterobacter cloacae (n = 10), Acinetobacter baumannii (n = 10), Pseudomonas aeruginosa
(n = 10), and Candida albicans (n = 10). The model we built successfully passed a series of blind tests involving clinical isolates
of 10 methicillin-resistant (MRSA) and 10 methicillin-sensitive (MSSA) Staphylococcus aureus strains as well as pair mixes of
these cultures with clinical isolates of Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae.
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AKTyanbHOCTb PasBUTUSA ObICTPbIX METOAOB WAEHTUMUKALMA NaTOreHHbIX OMOMOrMHEeCKNX OOBEKTOB PacTeT B CBSA3N C
MacCOBbIM PaCMPOCTPaHEHVEM B N1IEHEOHBIX YYPEXOEHNSX MUKPOOPraHM3MOB C JIEKAPCTBEHHOW YCTOMYMBOCTHIO U B
CB$31 C pa3BepTbiBaHEM LIEHTPOB MOHUTOPWHIa G1onorndecknx yrpos. VHgpakpacHas ®ypbe-CrnekTpoCKOonmus aBaseTcs
3(O(PEKTUBHOWN aNBTEPHATVIBON MAaCC-CMEKTPOMETPUM C TOYKM 3PEHUS CTOMMOCTU W MOPTaTUBHOCTY 060PYLOBaHUS,
9KCMPECCHOCTW aHannsa. Liensto paboTbl 66110 onrcaTs anroputM NaeHTUMUKaLmMM MUKPOOPraH3MOB B YMCTbIX KyNbTypax,
OCHOBaHHbIN Ha aHanmM3e konebaTeNbHbIX MHPakpacHbix Pypbe-cnexkTpoB KynbTyp (Fourier transform infrared, FTIR).
ANropuT™M OCHOBaH Ha aBTOMaTV31POBaHHOM aHasn3e CreKTPOB METOAOM [MaBHbIX KOMMOHEHT. B oTnnymre OT M3BECTHbIX B
nUTepaTtype, OH MO3BONSET NAEHTUMUUMPOBaTL DakTepun BHE 3aBMCUMOCTH OT CTaaun pocTa KymbTypbl M cOcTaBa cpedp!.
Ob6yyaroLLiaa 6asa faHHbIX BKIloYaia Havbonee pacnpoCcTpaHeHHble BO3OYAUTENM THOMHO-CENTUYECKIX MHIDEKLIIA YenoBeKa:
Staphylococcus aureus (n = 67), Enterococcus faecalis (n = 10), Enterococcus faecium (n = 10), Klebsiella pneumoniae
(n = 10), Escherichia coli (n = 10), Serratia marcescens (n = 10), Enterobacter cloacae (n = 10), Acinetobacter baumannii
(n = 10), Pseudomonas aeruginosa (n = 10) n Candlida albicans (n = 10). INocTpoeHHas Moaenb ycreLwHo anpobupoBaHa
Ha cepun KIMHMYECKNX N301ATOB Staphylococcus aureus: B Cnemnbix UCMbITaHWSAX y4acTBoBaio 10 LUTaMMOB C (DEHOTUMOM
nekapcTBeHHol yctondmeocT MRSA (methicillin-resistant Staphylococcus aureus) n 10 4yBCTBUTENbHbIX LUITAMMOB, a
TaKXe CMEeCb KyNbTyp 3TWX LWTaMMOB C KIIMHUYECKMMU mndonatammn Pseudomonas aeruginosa, Escherichia coli v
Klebsiella pneumoniae.
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Identification of microbial species is a routine task for clinical
microbiology laboratories. Rapid identification of pathogens
in patients with infections or sepsis is essential in prescribing
an adequate antibiotic treatment. Efficient therapy for these
aggressively progressing conditions is important since they
are a common cause of postoperative morbidity and mortality
in cardiac surgery [1] and maternal and neonatal death after
childbirth [2].

Pathogens can be identified by both traditional
microbiological tests and modern techniques now available
worldwide, such as matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-ToF MS). The most
popular spectrometers are MALDI BioTyper (Bruker; Germany)
and Vitek MS (Biomerieux; France). They deliver fast and
reliable results but are quite expensive and cannot be afforded
by many hospitals. Besides, these devices are too bulky and,
therefore, unsuitable for field use by biosafety agencies.

An alternative technique for the identification of
microorganisms is Fourier transform infrared (FTIR)
spectroscopy. It can determine the chemical composition of a
studied culture and identify any type of macromolecule or low
molecular weight compound. Similar to MALDI ToF MS, sample
preparation for FTIR spectroscopy is easy: the culture sample
simply needs to be mounted on a surface transparent to infrared
light and left there to dry. Although FTIR spectroscopy ensures a
quick diagnosis, its application in clinical microbiology is limited
because the FTIR-spectra of a studied culture vary depending
on the composition of the growth medium and culture growth
phase. The aim of this work was to develop an algorithm for
the reliable identification of microorganisms in pure cultures
regardless of the growth medium or growth phase based on
the analysis of their FTIR spectra.

METHODS
Strains of human pathogens

In this work, we used the strains of the most common causative
agents of infections and sepsis in humans, including S. aureus
(20 MRSA and 47 MSSA isolates), E. faecalis (n = 10),
E. faecium (n = 10), K. pneumoniae (n = 10), E. coli (n = 10),
S. marcescens (n = 10), E. cloacae (n = 10), A. baumannii
(n = 10), R aeruginosa (n = 10), S. epidermidis (n = 10), and
C. albicans (n = 10).

The pathogens were isolated from patients of Bakulev
National Medical Research Center of Cardiovascular Surgery
and Kulakov National Medical Research Center for Obstetrics,
Gynecology and Perinatology. Isolation and identification were
carried out according to the standard technique [3]. Differential
diagnostic media included mannitol salt agar selective for
staphylococci, Enterococcus agar, Endo agar with fish
hydrolysate for culturing gram-negative rods (Enterobacterales,
A. baumannii, and P. aeruginosa), Sabouraud agar and meat-
peptone broth supplemented with 1% glucose for C. albicans.
Confirmatory identification of isolates was performed on the
MALDI BioTyper mass spectrometer (Bruker; Germany).

Isolates deposited in the Cryobank were plated onto blood
agar plates under aerobic conditions at 37 °C and cultured
overnight.

Each isolate was grown in 4 different types of culture
media: agarized or liquid, with or without blood. The bloodless
media included egg-yolk salt, meat-peptone and Endo broths
and Sabouraud agar. For FTIR spectroscopy, the samples were
harvested 12, 24 and 48 hours after plating.
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To protect the operator of the FTIR spectrometer from
the risk of infection and to prepare the cultures for short-
term storage, they were inactivated in 70% alcohol before
spectroscopy. Thirty microliter aliquots of fresh liquid cultures
were collected into polypropylene microtubes, supplemented
with 70 pl of 96% ethanol and carefully mixed by pipetting.
Samples of the cultures grown on solid agar were collected
using the inoculation loop and then suspended in 70%
aqueous ethanol (30 mg of the biomass per 100 ul of the
alcohol solution).

Recording IR spectra of isolates

IR spectra were recorded from the suspensions of pathogen
cultures fixed in 70% aqueous ethanol. To prepare individual
samples for transmission IR spectroscopy, 5 to 19 pl of the
suspension were micropipetted onto standard (12.5 mm long
and 2 mm thick) ZnSe surfaces (Elektrosteklo; Moscow) and
left to dry until complete evaporation of the ethanol (5-15 min).
The spectra were recorded by the FTIR spectrometer Spectrum
Two (Perkin-Elmer; USA) over the wavenumber range of
4000-600 cm™ at 4 cm™" optical resolution and 1 cm™' digital
resolution. The ZnSe surface with an applied pathogen sample
was positioned vertically in the Microfocus holder (Perkin-
Elmer; USA) and placed in the way of a horizontal probe beam
generated by the IR source; 16 individual averaged scans were
accumulated for about 2 min. The background spectrum of
the spectrometer was recorded under the same conditions but
with the clean ZnSe surface and updated before recording the
IR spectrum of every new incoming sample.

Data analysis

After discarding the abnormal spectra, the number of spectra
ready for further analysis totalled 347, including 188 spectra
obtained from S. aureus (39 from these had MRSA phenotype;
48 had MSSA phenotype; and 101 were not characterized in
terms of their drug-resistance) and 169 spectra obtained from
other pathogens (14 from A. baumannii, 32 from C. albicans,
8 from E. cloacae, 21 from E. faecalis, 20 from E. faecium, 11
from E. coli, 17 from K. pneumoniae, 18 from P aeruginosa,
8 from S. marcescens, 10 from S. epidermidis); 10 spectra
represented mixed cultures: 2 were obtained from S. aureus
(MRSA) + E. coli; 2 from S. aureus (MSSA) + E. coli; 2 from
S. aureus (MRSA) + K. pneumoniae, 2 from S. aureus (MSSA)
+ K. pneumoniae, and another 2 from S. aureus (MSSA)
+ P aeruginosa. Fig. 1 illustrates the initial spectra used in
the analysis.

Using routine spectroscopy algorithms, the initial spectra
were preprocessed for unification; artifacts caused by drifts in
the baseline or atmospheric carbon dioxide and water vapor
fluctuations were eliminated. Briefly, the initial spectra were
normalized to the average transmission, and the first derivative
of the envelope was calculated; the relevant wavenumber
ranges were narrowed down to 600-1800 cm™ and 2800-
3000 cm™. Because the initial spectra were of good quality
and did not require any extra smoothing, the derivative was
calculated using the symmetric difference formula at two points
for numerical differentiation. Fig. 2 shows the preprocessed
spectra.

The preprocessed spectra were used to build a mathematical
model for the identification of S. aureus in a culture sample.
Another model capable of discriminating between MRSA and
MSSA strains was constructed based on the spectra of MRSA
and MSSA phenotypes of S. aureus. Both models exploited
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the spectra of pure cultures. The spectra of culture mixes were
used for model validation.

Both models were built by applying the principal component
analysis (PCA) and the linear discriminant analysis (LDA) [4].
LDA [5] allows selecting a line or a hyperplane effectively
separating two or more classes of the data. The ratio of
between-class to within-class variances shows reliability of
classification. However, matrix calculations in LDA do not
allow direct application of the spectral data. Datasets must
be characterized by a high number of correlated features
and regions of poor informative value must be identified. LDA
should be preceded by PCA to extract the most informative and
uncorrelated spectral data from the dataset. The informative
value of the method is assessed by variance: if the latter is low
at a given wavenumber, almost all spectra here are expected
to behave identically; therefore, such regions cannot provide
any valuable information. In PCA, informative and uncorrelated
data are extracted by projecting onto corresponding vectors
(principal components). In fact, a model constructed with
PCA-LDA is a projection of spectral data onto a new vector.
In practice, it entails calculation of a linear combination with
certain coefficients.

The built models were cross-validated [6]. Cross-validation
is a series of blind tests: the initial dataset is randomly
partitioned into k subsets; one of the resulting subsets (the test
dataset) is discarded, others k — 1 training sets are analyzed
by PCA-LDA. The obtained model predicts the values for the
test dataset as if they were initially unknown. This procedure
is repeated for each of k subsets. Once the values predicted
for all test subsets are averaged, one can make predictions
about new unknown spectra. When splitting the spectra into
the subsets, all spectra from the same isolate must fall within
one subset only. Otherwise, predicted values will be higher than
the actual ones. Cross-validation of our model for S. aureus
identification was performed at k = 20, i.e. the total set of
spectra was divided into 20 subsets so that the spectra of one
and the same isolate always fell into one subset only. For the
model discriminating between MSSA and MRSA strains, each
strain was represented by an equal number of isolates (k = 40).
Thus, each subset represented only one isolate.

Preprocessing and the analysis of the obtained spectral data
were done in R [7] and the RStudio environment. Spectral data were
handled by hyperSpec [8]; the models were built and validated using
caret [9] and MASS [10]. Images were created in ggplot2 [11].
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Fig. 1. The raw Fourier transform infrared spectra of pathogenic bacteria. Left to right and top to bottom are the spectra of A. baumannii, C. albicans, E. cloacae,
E. coli, E. faecalis, E. faecium, K. pneumoniae, P aeruginosa, S. aureus, S. epidermidis, and S. marcescens expressed in the units of light transmission
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RESULTS
Identification of S. aureus

Based on the spectra obtained from 11 species that are the
most common causative agents of infections and sepsis in
humans (S. aureus, S. epidermidis, E. faecalis, E. faecium,
K. pneumoniae, E. coli, S. marcescens, E. cloacae, A. baurnanni,
P, aeruginosa, and C. albicans), we built a mathematical model
for S. aureus identification. The accuracy of the model was
assessed by cross-validation on 20 subsets (the spectra of one
and the same isolate got into one subset only) and reached
98.4% (+ 4%). However, further in-depth analysis of cross-
validation results revealed that almost all errors arose from the
S. epidermidis isolate getting into the test sample. This means
that at the genus level the model performs well considering
the size and composition of the training dataset. The spectra
of other staphylococci (two S. epidermidis isolates) were too
poorly represented in the training dataset to let the model make
accurate predictions at the species level. The worst accuracy
(81%) observed during cross-validation represented the case
when the test dataset included the spectra of S. epidermidis
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leaving the training set with insufficient data to establish a
reliable difference between S. epidermis and S. aureus.

From that, one might conclude that these two related
species cannot be discriminated using our approach. But the
final model that aggregated all obtained data and was built
without cross-validation demonstrated an ability to discriminate
between these 2 species with 100% accuracy. This ability is
visually represented as the projection of the spectral data onto
the linear discriminant (the separating axis in the PCA-LDA
method; Fig. 3)

This projection is basically a result of multiplication of each
spectrum by a coefficient vector: if a preprocessed spectrum is
a vector (a set of values), then the linear discriminant is a result
of a linear combination. Model tuning is all about the choice of
optimal coefficients. Their values for the obtained model are
presented as a graph in Fig. 4.

The visual representation of the coefficients serves
to roughly interpret the obtained model: the higher is the
coefficient expressed in absolute figures, the more significant
is the corresponding spectral range. Higher coefficient
values expressed in absolute figures (with due account of
preprocessing and computation of the derivative) in the zone of
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Fig. 2. The Fourier transform infrared spectra after preprocessing: normalization to the average transmission and calculation of the first derivative. Dotted lines show
the boundaries of the wavenumber ranges used in the analysis: 600, 1800, 2800, 3000 cm""
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Fig. 4. Linear discriminant coefficients obtained by PCA-LDA. These coefficients were used to obtain the projections in Fig. 3. The coefficients represent the informative
value of spectral data. For example, high values of the initial spectrum in the zone of negative coefficients indicate the probability that the studied isolate is not the
pathogen of interest
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negative coefficients mean that the spectrum is not generated
by S. aureus, and vice versa.

To estimate the feasibility of the proposed approach for
clinical microbiology, we studied the ability of our model to
identify a target pathogen in mixed cultures. For the analysis,
we used 2 methicillin-resistant and 3 methicillin-sensitive
S. aureus strains. The microorganisms were cultured on
blood agar plates for 24 or 48 hours. Then equal volumes of
S. aureus and gram-negative bacteria (E. coli, K. pneumoniae
or P aeruginosa) cultured on Endo agar were combined.
The concentration of bacterial cells per unit volume was not
measured. All mixed samples were fixed in alcohol and fed to
the final model for identification (see the Table).

In all spectra except 2 representing one and the same
sample, the presence of a target pathogen was predicted with
high probability, which indicates that the model is reliable and
can be used in clinical practice.

Prediction of methicillin-resistance phenotype in
S. aureus isolates

Prediction of an methicillin-resistance phenotype in ic
Staphylococci is a serious challenge faced by clinical
microbiology. In this work we attempted to predict the MRSA/
MSSA phenotypes in S. aureus isolates based on their FTIR
spectra. The classification model was constructed in the same
fashion, i.e. using PCA and LDA in succession followed by
cross-validation.

We failed to achieve the same quality of predictions as
with S. aureus. The accuracy of the model evaluated by cross-
validation was 73%. The projection onto the linear discriminant
is shown in Fig. 5. Discrimination here was much worse than for
S. aureus. Still, 80% of the spectra were identified accurately.
This observation leads us to hypothesize a larger size of the
training sample could raise the reliability of the identification to
the acceptable level.

DISCUSSION

The first reports of FTIR application for the identification of
microorganisms were published in 1991 [12]. The research
works that followed were dedicated to the identification of
bacteria, such as lactobacili and agents of foodborne infections,
in the environment [13, 14]. A few studies demonstrated that
FTIR can be used to identify Mycobacteria and Listeria [15-17].
In 2011 with the arrival of commercially available spectrometers
by Bruker (Germany) and Perkin-Elmer (USA) that reliably
identified microorganisms from their FTIR spectra the number
of publications on the use of FTIR in microbiology started to
grow [18-20]. Research groups were formed outside Germany
in Poland [21], the UK [22, 23] and the Netherlands [24]. The
Dutch researchers were the first to attempt to identify the
causative agents of sepsis in humans and to compare spectral
resolutions of different vibrational spectroscopy techniques,
including FTIR spectroscopy, Raman spectroscopy, and
surface-enhanced Raman spectroscopy (SERS). The authors
concluded that FTIR and Raman spectroscopies produced
reliable results but were not as sensitive as SERS. In turn,
although SERS proved to be a very sensitive technique, its
reproducibility was poor.

Recently, a lot of research works have been published on the
use of FTIR in clinical microbiology [25-28]. The first work listed
here compares spectral resolutions of vibrational spectroscopy
techniques, including SERS (accuracy of 74.9%), Raman
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spectroscopy (accuracy of 97.8%) and FTIR spectroscopy
(accuracy of 96.2%), using a number of pathogenic and
nonpathogenic bacteria: P aeruginosa, P putida, E. coli,
E. faecium, Streptomyces lividans, B. subtilis, B. cereus, as
well as baker’s yeast Saccharomyces cerevisiae. The last work
from the list describes a method for the rapid identification of
bacterial microcolonies of 50 to 300 um in diameter using the
state-of-the-art IR-BioTyper spectrometer (Bruker): the colonies
are automatically transferred from the agarized culture medium
to the CaF, surface; the principal component analysis applied
to the obtained spectral data is performed by an artificial neural
network (ANN) accessible via the Bruker server.

The findings of those studies suggest that FTIR spectra
comprehensively describe the chemical composition of cells,
including biopolymers that are building blocks for cell walls
and membranes, intracellular DNA, phospholipids, sugars,
etc. and therefore ensure a) the reliable discrimination between
pathogenic bacterial species; b) the accurate identification of
microorganisms at the species level; ¢) the identification of a
phylum the studied isolate belongs to using digital libraries of
microbial spectra. Platforms for rapid testing based solely on
IR spectroscopy data could provide a quick solution to these

Table. Predicted probability of S. aureus presence in the sample

Samole Predicted probability of
le Mixt samples S. aureus presence in the
sample
1 MSSA + K. pneumoniae 96.8%
1 MSSA + K. pneumoniae 95.1%
2 MSSA + E. coli 40.0%
2 MSSA + E. coli 41.5%
3 MRSA + K. pneumoniae 96.4%
3 MRSA + K. pneumoniae 97.0%
4 MRSA + R aeruginosa 90.6%
4 MRSA + R aeruginosa 87.7%
5 MRSA + E. coli 82.4%
5 MRSA + E. coli 73.0%
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Fig. 5. Projection on the linear discriminant separating phenotypes MSSA and
MRSA. Projections of MSSA spectra are shown in red; projections of MRSA
spectra are shown in blue. Although 100% classification accuracy was not
achieved, it was 80% given that LD > 0
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three tasks and assist in optimizing the treatment strategy and
adapting it to an individual patient in order to avoid prescription
of antibiotics ineffective against the causative pathogen. However,
the transition of this approach from the research lab to the
clinical setting is obstructed by the absence of an algorithm for
automated analysis of microbial FTIR spectra. Such algorithm
is expected to identify those components of the spectrum
that are determined by the genotype of the strain and not by
culturing conditions, such as the growth medium composition,
the growth phase, the degree of culture degradation, etc. In
all works referred to above the authors sought to standardize
culturing conditions, which is quite difficult to achieve in the real
clinical setting and is also time consuming.

Such algorithm is proposed in the present work. It allows
identification of bacterial species regardless of the growth
phase and growth medium composition. We cultured a number
of bacterial isolates of S. aureus, E. faecalis, E. faecium,
K. pneumoniae, E. coli, S. marcescens, E. cloacae, A. baurnanni,
P, aeruginosa, S. epidermidis and C. albicans in different media
and for different time periods. Using PCA, we identified the
most informative regions of microbial FTIR spectra. The result
of the analysis was represented as a system of coefficients that
facilitated quick identification of new isolates from their FTIR
spectra. The accuracy of the proposed method was assessed
by the blind test using pure cultures of S. aureus isolates and
their paired mixes with P aeruginosa, E. coli and K. pneumoniae.

The obtained results demonstrate that the proposed
algorithm for the analysis of microbial FTIR spectra reliably
identifies the presence of S. aureus in the culture regardless
of the duration of culturing (24 or 48 hours) after being trained
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