
BULLETIN OF RSMU   4, 2018   VESTNIKRGMU.RU| |50

ORIGINAL RESEARCH    MICROBIOLOGY

А. Ю. Сунцова1, Р. Р. Гулиев1, Д. А. Попов2, Т. Ю. Вострикова2, Д. В. Дубоделов3, А. Н. Щеголихин1, Б. К. Лайпанов5, 
Т. В. Припутневич3, А. Б. Шевелев1,4     , И. Н. Курочкин1

ИДЕНТИФИКАЦИЯ МИКРООРГАНИЗМОВ С ПОМОЩЬЮ 
ИНФРАКРАСНЫХ ФУРЬЕ-СПЕКТРОВ

Актуальность развития быстрых методов идентификации патогенных биологических объектов растет в связи с 
массовым распространением в лечебных учреждениях микроорганизмов с лекарственной устойчивостью и в 
связи с развертыванием центров мониторинга биологических угроз. Инфракрасная Фурье-спектроскопия является 
эффективной альтернативой масс-спектрометрии с точки зрения стоимости и портативности оборудования, 
экспрессности анализа. Целью работы было описать алгоритм идентификации микроорганизмов в чистых культурах, 
основанный на анализе колебательных инфракрасных Фурье-спектров культур (Fourier transform infrared, FTIR). 
Алгоритм основан на автоматизированном анализе спектров методом главных компонент. В отличие от известных в 
литературе, он позволяет идентифицировать бактерии вне зависимости от стадии роста культуры и состава среды. 
Обучающая база данных включала наиболее распространенные возбудители гнойно-септических инфекций человека: 
Staphylococcus aureus (n = 67), Enterococcus faecalis (n = 10), Enterococcus faecium (n = 10), Klebsiella pneumoniae 
(n = 10), Escherichia coli (n = 10), Serratia marcescens (n = 10), Enterobacter cloacae (n = 10), Acinetobacter baumannii 
(n = 10), Pseudomonas aeruginosa (n = 10) и Candida albicans (n = 10). Построенная модель успешно апробирована 
на серии клинических изолятов Staphylococcus aureus: в слепых испытаниях участвовало 10 штаммов с фенотипом 
лекарственной устойчивости MRSA (methicillin-resistant Staphylococcus aureus) и 10 чувствительных штаммов, а 
также смесь культур этих штаммов с клиническими изолятами Pseudomonas aeruginosa, Escherichia coli и 
Klebsiella pneumoniae.
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IDENTIFICATION OF MICROORGANISMS BY FOURIER-TRANSFORM 
INFRARED SPECTROSCOPY

The need for novel techniques of rapid identification of pathogenic microorganisms arises from the massive spread of drug-
resistant nosocomial strains and the emergence of centers for biohazard control. Fourier-transform infrared spectroscopy is 
a promising alternative to mass spectrometry as it is cost-effective, fast and suitable for field use. The aim of this work was to 
propose an algorithm for the identification of microorganisms in pure cultures based on the analysis of their Fourier transform 
infrared spectra. The algorithm is based on the automated principal component analysis of infrared spectra. Unlike its analogues 
described in the literature, the algorithm is capable of identifying bacteria regardless of the culture medium or growth phase. 
The training sample included the most prevalent causative agents of infections and sepsis in humans: Staphylococcus aureus 
(n = 67), Enterococcus faecalis (n = 10), Enterococcus faecium (n = 10), Klebsiella pneumoniae (n = 10), Escherichia coli (n = 10), 
Serratia marcescens (n = 10), Enterobacter cloacae (n = 10), Acinetobacter baumannii (n = 10), Pseudomonas aeruginosa
(n = 10), and Candida albicans (n = 10). The model we built successfully passed a series of blind tests involving clinical isolates 
of 10 methicillin-resistant (MRSA) and 10 methicillin-sensitive (MSSA) Staphylococcus aureus strains as well as pair mixes of 
these cultures with clinical isolates of Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae.
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Identification of microbial species is a routine task for clinical 
microbiology laboratories. Rapid identification of pathogens 
in patients with infections or sepsis is essential in prescribing 
an adequate antibiotic treatment. Efficient therapy for these 
aggressively progressing conditions is important since they 
are a common cause of postoperative morbidity and mortality 
in cardiac surgery [1] and maternal and neonatal death after 
childbirth [2].

Pathogens can be identified by both traditional 
microbiological tests and modern techniques now available 
worldwide, such as matrix-assisted laser desorption/ionization 
time-of-flight mass spectrometry (MALDI-ToF MS). The most 
popular spectrometers are MALDI BioTyper (Bruker; Germany) 
and Vitek MS (Biomerieux; France). They deliver fast and 
reliable results but are quite expensive and cannot be afforded 
by many hospitals. Besides, these devices are too bulky and, 
therefore, unsuitable for field use by biosafety agencies.

An alternative technique for the identification of 
microorganisms is Fourier transform infrared (FTIR) 
spectroscopy. It can determine the chemical composition of a 
studied culture and identify any type of macromolecule or low 
molecular weight compound. Similar to MALDI ToF MS, sample 
preparation for FTIR spectroscopy is easy: the culture sample 
simply needs to be mounted on a surface transparent to infrared 
light and left there to dry. Although FTIR spectroscopy ensures a 
quick diagnosis, its application in clinical microbiology is limited 
because the FTIR-spectra of a studied culture vary depending 
on the composition of the growth medium and culture growth 
phase. The aim of this work was to develop an algorithm for 
the reliable identification of microorganisms in pure cultures 
regardless of the growth medium or growth phase based on 
the analysis of their FTIR spectra. 

METHODS

Strains of human pathogens

In this work, we used the strains of the most common causative 
agents of infections and sepsis in humans, including S. aureus 
(20 MRSA and 47 MSSA isolates), E. faecalis (n = 10), 
E. faecium (n = 10), K. pneumoniae (n = 10), E. coli (n = 10), 
S. marcescens (n = 10), E. cloacae (n = 10), A. baumannii 
(n = 10), P. aeruginosa (n = 10), S. epidermidis (n = 10), and 
C. albicans (n = 10).

The pathogens were isolated from patients of Bakulev 
National Medical Research Center of Cardiovascular Surgery 
and Kulakov National Medical Research Center for Obstetrics, 
Gynecology and Perinatology. Isolation and identification were 
carried out according to the standard technique [3]. Differential 
diagnostic media included mannitol salt agar selective for 
staphylococci, Enterococcus agar, Endo agar with fish 
hydrolysate for culturing gram-negative rods (Enterobacterales, 
A. baumannii, and P. aeruginosa), Sabouraud agar and meat-
peptone broth supplemented with 1% glucose for C. albicans. 
Confirmatory identification of isolates was performed on the 
MALDI BioTyper mass spectrometer (Bruker; Germany).

Isolates deposited in the Cryobank were plated onto blood 
agar plates under aerobic conditions at 37 °С and cultured 
overnight.

Each isolate was grown in 4 different types of culture 
media: agarized or liquid, with or without blood. The bloodless 
media included egg-yolk salt, meat-peptone and Endo broths 
and Sabouraud agar. For FTIR spectroscopy, the samples were 
harvested 12, 24 and 48 hours after plating.

To protect the operator of the FTIR spectrometer from 
the risk of infection and to prepare the cultures for short-
term storage, they were inactivated in 70% alcohol before 
spectroscopy. Thirty microliter aliquots of fresh liquid cultures 
were collected into polypropylene microtubes, supplemented 
with 70 µl of 96% ethanol and carefully mixed by pipetting. 
Samples of the cultures grown on solid agar were collected 
using the inoculation loop and then suspended in 70% 
aqueous ethanol (30 mg of the biomass per 100 µl of the 
alcohol solution). 

Recording IR spectra of isolates

IR spectra were recorded from the suspensions of pathogen 
cultures fixed in 70% aqueous ethanol. To prepare individual 
samples for transmission IR spectroscopy, 5 to 19 µl of the 
suspension were micropipetted onto standard (12.5 mm long 
and 2 mm thick) ZnSe surfaces (Elektrosteklo; Moscow) and 
left to dry until complete evaporation of the ethanol (5–15 min). 
The spectra were recorded by the FTIR spectrometer Spectrum 
Two (Perkin-Elmer; USA) over the wavenumber range of 
4000–600 cm-1 at 4 cm-1 optical resolution and 1 cm-1 digital 
resolution. The ZnSe surface with an applied pathogen sample 
was positioned vertically in the Microfocus holder (Perkin-
Elmer; USA) and placed in the way of a horizontal probe beam 
generated by the IR source; 16 individual averaged scans were 
accumulated for about 2 min. The background spectrum of 
the spectrometer was recorded under the same conditions but 
with the clean ZnSe surface and updated before recording the 
IR spectrum of every new incoming sample. 

Data analysis

After discarding the abnormal spectra, the number of spectra 
ready for further analysis totalled 347, including 188 spectra 
obtained from S. aureus (39 from these had MRSA phenotype; 
48 had MSSA phenotype; and 101 were not characterized in 
terms of their drug-resistance) and 169 spectra obtained from 
other pathogens (14 from A. baumannii, 32 from C. albicans, 
8 from E. cloacae, 21 from E. faecalis, 20 from E. faecium, 11 
from E. coli, 17 from K. pneumoniae, 18 from P. aeruginosa, 
8 from S. marcescens, 10 from S. epidermidis); 10 spectra 
represented mixed cultures: 2 were obtained from S. aureus 
(MRSA) + E. coli; 2 from S. aureus (MSSA) + E. coli; 2 from 
S. aureus (MRSA) + K. pneumoniae, 2 from S. aureus (MSSA) 
+ K. pneumoniae, and another 2 from S. aureus (MSSA) 
+ P. aeruginosa. Fig. 1 illustrates the initial spectra used in 
the analysis.

Using routine spectroscopy algorithms, the initial spectra 
were preprocessed for unification; artifacts caused by drifts in 
the baseline or atmospheric carbon dioxide and water vapor 
fluctuations were eliminated. Briefly, the initial spectra were 
normalized to the average transmission, and the first derivative 
of the envelope was calculated; the relevant wavenumber 
ranges were narrowed down to 600–1800 cm-1 and 2800–
3000 cm-1. Because the initial spectra were of good quality 
and did not require any extra smoothing, the derivative was 
calculated using the symmetric difference formula at two points 
for numerical differentiation. Fig. 2 shows the preprocessed 
spectra. 

The preprocessed spectra were used to build a mathematical 
model for the identification of S. aureus in a culture sample. 
Another model capable of discriminating between MRSA and 
MSSA strains was constructed based on the spectra of MRSA 
and MSSA phenotypes of S. aureus. Both models exploited 
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Fig. 1. The raw Fourier transform infrared spectra of pathogenic bacteria. Left to right and top to bottom are the spectra of A. baumannii, C. albicans, E. cloacae, 
E. coli, E. faecalis, E. faecium, K. pneumoniae, P. aeruginosa, S. aureus, S. epidermidis, and S. marcescens expressed in the units of light transmission

the spectra of pure cultures. The spectra of culture mixes were 
used for model validation.

Both models were built by applying the principal component 
analysis (PCA) and the linear discriminant analysis (LDA) [4]. 
LDA [5] allows selecting a line or a hyperplane effectively 
separating two or more classes of the data. The ratio of 
between-class to within-class variances shows reliability of 
classification. However, matrix calculations in LDA do not 
allow direct application of the spectral data. Datasets must 
be characterized by a high number of correlated features 
and regions of poor informative value must be identified. LDA 
should be preceded by PCA to extract the most informative and 
uncorrelated spectral data from the dataset. The informative 
value of the method is assessed by variance: if the latter is low 
at a given wavenumber, almost all spectra here are expected 
to behave identically; therefore, such regions cannot provide 
any valuable information. In PCA, informative and uncorrelated 
data are extracted by projecting onto corresponding vectors 
(principal components). In fact, a model constructed with 
PCA-LDA is a projection of spectral data onto a new vector. 
In practice, it entails calculation of a linear combination with 
certain coefficients.

The built models were cross-validated [6]. Cross-validation 
is a series of blind tests: the initial dataset is randomly 
partitioned into k subsets; one of the resulting subsets (the test 
dataset) is discarded, others k – 1 training sets are analyzed 
by PCA-LDA. The obtained model predicts the values for the 
test dataset as if they were initially unknown. This procedure 
is repeated for each of k subsets. Once the values predicted 
for all test subsets are averaged, one can make predictions 
about new unknown spectra. When splitting the spectra into 
the subsets, all spectra from the same isolate must fall within 
one subset only. Otherwise, predicted values will be higher than 
the actual ones. Cross-validation of our model for S. aureus 
identification was performed at k = 20, i.e. the total set of 
spectra was divided into 20 subsets so that the spectra of one 
and the same isolate always fell into one subset only. For the 
model discriminating between MSSA and MRSA strains, each 
strain was represented by an equal number of isolates (k = 40). 
Thus, each subset represented only one isolate. 

Preprocessing and the analysis of the obtained spectral data 
were done in R [7] and the RStudio environment. Spectral data were 
handled by hyperSpec [8]; the models were built and validated using 
caret [9] and MASS [10]. Images were created in ggplot2 [11].
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Fig. 2. The Fourier transform infrared spectra after preprocessing: normalization to the average transmission and calculation of the first derivative. Dotted lines show 
the boundaries of the wavenumber ranges used in the analysis: 600, 1800, 2800, 3000 cm-1

RESULTS

Identification of S. aureus

Based on the spectra obtained from 11 species that are the 
most common causative agents of infections and sepsis in 
humans (S. aureus, S. epidermidis, E. faecalis, E. faecium, 
K. pneumoniae, E. coli, S. marcescens, E. cloacae, A. baumannii, 
P. aeruginosa, and C. albicans), we built a mathematical model 
for S. aureus identification. The accuracy of the model was 
assessed by cross-validation on 20 subsets (the spectra of one 
and the same isolate got into one subset only) and reached 
98.4% (± 4%). However, further in-depth analysis of cross-
validation results revealed that almost all errors arose from the 
S. epidermidis isolate getting into the test sample. This means 
that at the genus level the model performs well considering 
the size and composition of the training dataset. The spectra 
of other staphylococci (two S. epidermidis isolates) were too 
poorly represented in the training dataset to let the model make 
accurate predictions at the species level. The worst accuracy 
(81%) observed during cross-validation represented the case 
when the test dataset included the spectra of S. epidermidis 

leaving the training set with insufficient data to establish a 
reliable difference between S. epidermis and S. aureus.

From that, one might conclude that these two related 
species cannot be discriminated using our approach. But the 
final model that aggregated all obtained data and was built 
without cross-validation demonstrated an ability to discriminate 
between these 2 species with 100% accuracy. This ability is 
visually represented as the projection of the spectral data onto 
the linear discriminant (the separating axis in the PCA-LDA 
method; Fig. 3)

This projection is basically a result of multiplication of each 
spectrum by a coefficient vector: if a preprocessed spectrum is 
a vector (a set of values), then the linear discriminant is a result 
of a linear combination. Model tuning is all about the choice of 
optimal coefficients. Their values for the obtained model are 
presented as a graph in Fig. 4.

The visual representation of the coefficients serves 
to roughly interpret the obtained model: the higher is the 
coefficient expressed in absolute figures, the more significant 
is the corresponding spectral range. Higher coefficient 
values expressed in absolute figures (with due account of 
preprocessing and computation of the derivative) in the zone of 
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Fig. 3. Projection of the initial data onto the linear discriminant (LD) obtained by PCA-LDA. Pathogens are marked by different colors. For the sake of convenience, the 
spectra of the target pathogen S. aureus are separated from others on X-axis. The groups are well-separated given that LD > 0

Fig. 4. Linear discriminant coefficients obtained by PCA-LDA. These coefficients were used to obtain the projections in Fig. 3. The coefficients represent the informative 
value of spectral data. For example, high values of the initial spectrum in the zone of negative coefficients indicate the probability that the studied isolate is not the 
pathogen of interest
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negative coefficients mean that the spectrum is not generated 
by S. aureus, and vice versa.

To estimate the feasibility of the proposed approach for 
clinical microbiology, we studied the ability of our model to 
identify a target pathogen in mixed cultures. For the analysis, 
we used 2 methicillin-resistant and 3 methicillin-sensitive 
S. aureus strains. The microorganisms were cultured on 
blood agar plates for 24 or 48 hours. Then equal volumes of 
S. aureus and gram-negative bacteria (E. coli, K. pneumoniae 
or P. aeruginosa) cultured on Endo agar were combined. 
The concentration of bacterial cells per unit volume was not 
measured. All mixed samples were fixed in alcohol and fed to 
the final model for identification (see the Table). 

In all spectra except 2 representing one and the same 
sample, the presence of a target pathogen was predicted with 
high probability, which indicates that the model is reliable and 
can be used in clinical practice.

Prediction of methicillin-resistance phenotype in 
S. aureus isolates

Prediction of an methicillin-resistance phenotype in ic 
Staphylococci is a serious challenge faced by clinical 
microbiology. In this work we attempted to predict the MRSA/
MSSA phenotypes in S. aureus isolates based on their FTIR 
spectra. The classification model was constructed in the same 
fashion, i.e. using PCA and LDA in succession followed by 
cross-validation.

We failed to achieve the same quality of predictions as 
with S. aureus. The accuracy of the model evaluated by cross-
validation was 73%. The projection onto the linear discriminant 
is shown in Fig. 5. Discrimination here was much worse than for 
S. aureus. Still, 80% of the spectra were identified accurately. 
This observation leads us to hypothesize a larger size of the 
training sample could raise the reliability of the identification to 
the acceptable level.

DISCUSSION

The first reports of FTIR application for the identification of 
microorganisms were published in 1991 [12]. The research 
works that followed were dedicated to the identification of 
bacteria, such as lactobacilli and agents of foodborne infections, 
in the environment [13, 14]. A few studies demonstrated that 
FTIR can be used to identify Mycobacteria and Listeria [15–17]. 
In 2011 with the arrival of commercially available spectrometers 
by Bruker (Germany) and Perkin-Elmer (USA) that reliably 
identified microorganisms from their FTIR spectra the number 
of publications on the use of FTIR in microbiology started to 
grow [18–20]. Research groups were formed outside Germany 
in Poland [21], the UK [22, 23] and the Netherlands [24]. The 
Dutch researchers were the first to attempt to identify the 
causative agents of sepsis in humans and to compare spectral 
resolutions of different vibrational spectroscopy techniques, 
including FTIR spectroscopy, Raman spectroscopy, and 
surface-enhanced Raman spectroscopy (SERS). The authors 
concluded that FTIR and Raman spectroscopies produced 
reliable results but were not as sensitive as SERS. In turn, 
although SERS proved to be a very sensitive technique, its 
reproducibility was poor.

Recently, a lot of research works have been published on the 
use of FTIR in clinical microbiology [25–28]. The first work listed 
here compares spectral resolutions of vibrational spectroscopy 
techniques, including SERS (accuracy of 74.9%), Raman 

spectroscopy (accuracy of 97.8%) and FTIR spectroscopy 
(accuracy of 96.2%), using a number of pathogenic and 
nonpathogenic bacteria: P. aeruginosa, P. putida, E. coli, 
E. faecium, Streptomyces lividans, B. subtilis, B. cereus, as 
well as baker’s yeast Saccharomyces cerevisiae. The last work 
from the list describes a method for the rapid identification of 
bacterial microcolonies of 50 to 300 µm in diameter using the 
state-of-the-art IR-BioTyper spectrometer (Bruker): the colonies 
are automatically transferred from the agarized culture medium 
to the CaF

2
 surface; the principal component analysis applied 

to the obtained spectral data is performed by an artificial neural 
network (ANN) accessible via the Bruker server.

The findings of those studies suggest that FTIR spectra 
comprehensively describe the chemical composition of cells, 
including biopolymers that are building blocks for cell walls 
and membranes, intracellular DNA, phospholipids, sugars, 
etc. and therefore ensure a) the reliable discrimination between 
pathogenic bacterial species; b) the accurate identification of 
microorganisms at the species level; c) the identification of a 
phylum the studied isolate belongs to using digital libraries of 
microbial spectra. Platforms for rapid testing based solely on 
IR spectroscopy data could provide a quick solution to these 

Fig. 5. Projection on the linear discriminant separating phenotypes MSSA and 
MRSA. Projections of MSSA spectra are shown in red; projections of MRSA 
spectra are shown in blue. Although 100% classification accuracy was not 
achieved, it was 80% given that LD > 0

Table. Predicted probability of S. aureus presence in the sample

Sample 
ID

Mixt samples
Predicted probability of 

S. aureus presence in the 
sample

1 MSSA + K. pneumoniae 96.8%

1 MSSA + K. pneumoniae 95.1%

2 MSSA + E. coli 40.0%

2 MSSA + E. coli 41.5%

3 MRSA + K. pneumoniae 96.4%

3 MRSA + K. pneumoniae 97.0%

4 MRSA + P. aeruginosa 90.6%

4 MRSA + P. aeruginosa 87.7%

5 MRSA + E. coli 82.4%

5 MRSA + E. coli 73.0%
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three tasks and assist in optimizing the treatment strategy and 
adapting it to an individual patient in order to avoid prescription 
of antibiotics ineffective against the causative pathogen. However, 
the transition of this approach from the research lab to the 
clinical setting is obstructed by the absence of an algorithm for 
automated analysis of microbial FTIR spectra. Such algorithm 
is expected to identify those components of the spectrum 
that are determined by the genotype of the strain and not by 
culturing conditions, such as the growth medium composition, 
the growth phase, the degree of culture degradation, etc. In 
all works referred to above the authors sought to standardize 
culturing conditions, which is quite difficult to achieve in the real 
clinical setting and is also time consuming. 

Such algorithm is proposed in the present work. It allows 
identification of bacterial species regardless of the growth 
phase and growth medium composition. We cultured a number 
of bacterial isolates of S. aureus, E. faecalis, E. faecium, 
K. pneumoniae, E. coli, S. marcescens, E. cloacae, A. baumannii, 
P. aeruginosa, S. epidermidis and C. albicans in different media 
and for different time periods. Using PCA, we identified the 
most informative regions of microbial FTIR spectra. The result 
of the analysis was represented as a system of coefficients that 
facilitated quick identification of new isolates from their FTIR 
spectra. The accuracy of the proposed method was assessed 
by the blind test using pure cultures of S. aureus isolates and 
their paired mixes with P. aeruginosa, E. coli and K. pneumoniae.

The obtained results demonstrate that the proposed 
algorithm for the analysis of microbial FTIR spectra reliably 
identifies the presence of S. aureus in the culture regardless 
of the duration of culturing (24 or 48 hours) after being trained 

on the sample of 11 pathogens representing different phyla 
(bacteria and ascomycete yeasts). All samples were inactivated 
in 70% ethanol before their spectra were recorded. This makes 
manipulations with virulent pathogens safer and stabilizes the 
samples until further analysis. The presence of whole blood 
and admixtures of other microorganisms (gram-negative 
E. coli, K. pneumoniae and P. aeruginosa) in the sample at 
concentrations more or less equal to the concentration of 
S. aureus does not affect the ability of the proposed algorithm 
to identify the pathogen of interest. The model predicts the 
presence of a methicillin-resistant phenotype (MRSA/MSSA) 
with 80% accuracy. We hope that our algorithm will be capable 
of identifying any other pathogen cultured in any media after 
expanding the training set. 

CONCLUSIONS

We have described a method for creating a database of 
microbial FTIR spectra and a comparison algorithm suitable 
for the identification of pathogenic microorganisms that 
discriminates between the species regardless of the culture 
growth phase or medium composition. This algorithm can 
be used in combination with the standard and affordable 
spectrometer Spectrum Two (Perkin-Elmer; USA). We have 
tested out algorithm on the clinical isolates of S. aureus, which 
were reliably discriminated from other causative agents of 
infections, including E. faecalis, E. faecium, K. pneumoniae, 
E. coli, S. marcescens, E. cloacae, A. baumannii, P. aeruginosa, 
and C. albicans, taken as pure cultures and pair mixes.
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