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TOWARDS A COMPUTATIONAL PREDICTION FOR THE TUMOR
SELECTIVE ACCUMULATION OF PARAMAGNETIC
NANOPARTICLES IN RETINOBLASTOMA CELLS
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Retinoblastoma is a malignant growth affecting retina. An original combination of modified Non-Markov and Gompertzian
computational approaches is proven of being a reliable tool for prediction of tumor selective accumulation of the bivalent metal
isotopes (**Mg, ¥*Ca, %°Co, ¢Zn, ...) — releasing nanoparticles in human retinoblastoma cells. This mathematical model operates
with a starting point of the discriminative drug uptake caused by a gap-like distinction between the neighboring malignant and
normal cell proliferation rates. This takes into account both pharmacokinetic and pharmacodynamic peculiarities of PMC16,
fullerene-C,, based nanoparticles, known for their unique capabilities for a cancer-targeted delivery of paramagnetic metal
isotopes followed by an essential chemotherapeutic effect. Being dependent on a tumor growth rate but not on the neoplasm
steady state mass, a randomized level of drug accumulation in retinoblastoma cells has been formalized as a predictive
paradigm suitable to optimize an ongoing PMC16 preclinical research.
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MATEMATUHECKOE NMPOrHO3NPOBAHWNE NMAPAMETPOB
OonyXxoJib-CEJIEKTUBHOIO HAKOIJIEHNA MAPAMATIHATHbIX
HAHOYACTUL, KNETKAMU PETUHOBJIACTOMDI

P. k. MoxaHcen'2, A. A. ByxsocTog?, K. B. Epmakor?, [1. A. KyaHeLos2 4

" Kacbegpa matemaTvki 1 KOMMNboTEPHbIX Hayk, YHnBepcuTeT KOxHon Janum, OpeHce, HaHns
2 VIHCTUTYT XuMmnyeckolt hnamnki uvenn H. H. CemeHosa PAH, Mockea

8 Kaheapa MeayuMHCKMX HaHOBMOTEXHOMOMMIA, POCCUIACKIIA HALUMOHATbHBIN UCCNEA0BATENBCKUIA MEAULMHCKUA yHBEPCUTET nMeHn H. W, Muporosa, Mocksa

PetnHobnactoma — 310Ka4eCcTBEHHOE HOBOOOPA30BaHVe, nopaxxatoLee cetHaTky rmasa. Llenbto paboTsl 6bi1o0 padpaboTarb
BbIMNCAVTENBHBIN MOAXOA K MPOrHO3MPOBAHWIO OMyXOJb-CreyudnyecKoro HakonaeHss HaHO4aCcTuUL, BbICBOOOXAAIOLLIVX
KaT/OHbI M30TOMOB ABYXBaNlEHTHbIX MeTa/noB (**Mg, “*Ca, °Co, Zn, ...) B kKNneTkax peTnHobnactoMbl YenoBeka. [peanoxeHa
mMatemaTu4eckasl MOA€eNb, OCHOBaHHAs Ha MPUMEHEHWM ypaBHeHWst ToMnepua 1M OpUrMHaibHOM BEPCUN HEMAPKOBCKOW
nonynsumonHo  auHaMnky, OHa OocHoBaHa Ha (hakTe $PKO  BbIPAXKEHHOrO  ANCKPUMMWHALIMOHHOMO — pacnpeneneHus
npenapara Mexmdy 3/10Ka4eCTBEHHbIMI 1 «COCEACTBYIOLLMMA» C HUMN HOPMaJTbHBIML KNETKaMK 1 pa3nnymsix B napamMeTpax
MNX KNETOYHBIX LMKIOB. YUTeHbl Kak (hapMakoKMHETUYeCKME, Tak U (hapMakoaMHaMnyecke OCOOEHHOCTU HaHOYaCTUL
PMC16 — nopdvprH-npoussoaHbix dynnepera C, ), 3BECTHbIX Onarogapsa Ux YHVKasibHbIM BO3MOXHOCTAM B OTHOLLIEHUM
HanpaBfeHHOM OOCTaBKM NapamMarHUTHbIX M30TOMNOB METAIOB B PaKOBbIE KNETKM, COMPOBOXOAIOLLENCHA CYLLECTBEHHbIM
XVMNOTEPANEBTUYECKUM 3P EKTOM. [JEMOHCTPMPYSA 3aBUCUMMOCTb OT CKOPOCTM POCTa OMyxOmnu, HO He OT ee MacChbl B
cTaUmoHapHoON dase, paHaOMU3MPOBaHHbIN YPOBEHb HAKOMIEHWUST MpenapaTa B KNeTKax peTMHO6acTOMbl (hopMann3oBaH
KaK LIEHHbIN B MPOrHOCTNYECKOM OTHOLLUEHUN PACHETHbIA METOA, MPUIOAHBIM NS ONTUMM3ALMX MPOBOAMMbIX B HACTOSLLIEE
BPEMS AOKTMHNYECKIX UCCNEA0BaHNA KAaTMOHOOOMEHHbIX HaHoYacTu, PMC16.
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Human retinoblastoma (RB) is found to be very sensitive to
some metal paramagnetic isotopes due their ability to promote
a so called magnetic isotope effects which, in turn, promotes
a sharp inhibition of DNA repair in malignant cells along with a
formation of shorted, and hence DNA repair inconsistent, DNA
sequences [1-4]. This might be taken as a “hopeful pullout”
for coming up with a new element in RB chemotherapy based
on administration of #Mg?, “Ca?, ®Co?*, ¢Zn* carrying/
releasing nanoparticles (NPs) once the RB cell does indeed
overexpresses the DNA Polymerase Beta, a target enzyme for
the nuclear spin selective DNA repair [1, 5, 6].

These complexes of paramagnetic isotopes with PMC16
(Fig. 1), a peculiar type of amphiphilic low-toxic NPs, were
in fact deliberately developed to face a requirement for ion
transporter applicable in both tumor cell targeting and a
subsequent intracellular controlled drug release [1, 5]. As a
sign of such paramagnetic impacts, a significant decrease of
proliferation rates has been observed in Y79 and WERI-RB-1
retinoblastoma cell strains [2-4].

According to PubMed statistics, the amount of publications
on nanoparticles (NPs) for a passive targeted drug delivery has
been increased in the past 15 years from about 40 (year 2000)
up to nearly 1,800 (2015) taking the solid tumors research
only [7]. As per the PMC16 passive targeting which would
presumably take place in RB engaging preclinical studies,
a tumor selectivity of anticipated NPs uptake looks rather
obscure and unpredictable owing to a number of the RB-
marking epigenetic factors [8-10].

A reliable prediction on the rate and extent of NP (PMC16) —
RB selective accumulation would be no doubt a sort of
beneficial supplement to anti-RB chemotherapeutic strategies
proposed for a preclinical trial program. This work is an attempt
to solve this task by employing a certain arsenal of mathematical
modeling tools.

Noteworthy, an autonomous trend of computational
approach has already made an essential contribution to
preclinical and clinical trial scenaria in oncology and related
areas [11-17].

METHODS

To proceed the simulation data, the most common drug
(NP) — cell distribution and the RB/RT cell proliferation
patterns (Table) [8, 9, 15, 18] were treated using a Sigma
QXL600 software algorithm in HP9107 (Hewlett-Packard,
Inc; USA) and Olivetti Riccetta SL110 (Ing. C. Olivetti & Co.;
VTanns) analytical units adopting a slightly modified Penman-—
Dalbreaux probabilistic approximation technique [14, 16] to
harmonize the output with the population dynamics platforms
based on both non-Markov [12, 14] and Gompertz [11]
equation systems.

RESULTS

Drug toxicity to normal tissues and the emergence of drug-
resistance along with a tumor selectivity in drug (NP) targeting/
accumulation processes are no doubt the major limiting barriers
on a path to chemotherapy of cancer [5, 6, 8]. A computational
modeling of cell population dynamics in harshly varying object-
surrounding environment could be applied to chemotherapeutic
paradigm [7, 14, 17, 18]. In several cases, this approach might
make a difference for improving responsiveness to the phase-
specific drugs (NPs) taking into account their non-discriminative,
vector-free (“passive”), distribution within a cell pool consisting
of neighboring slow and fast proliferating populations.
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Non-Markov population dynamics

The dynamics under various drug regimens of populations that
differ in life-cycle parameters is simulated using a computer
model whose simplest form is given in:

x(t) =Ax (t-1)[1-D(®)],

where x(f) is population density at time ¢, A is the cell birth rate,
T is generation time, and D(f) denotes the environmental process,
so that D(f) > O corresponds to the occurrence of effective
concentration of the drug in the system. Using this model the
elimination time of malignant population (7 ) and that of the
limiting host population (7,) were estimated, and the elimination
coefficient, Z, measuring the treatment efficacy, was calculated
according to:

Z=1-T/T,.

The treatment efficacy is a nonmonotonic function of the
relation between the cell generation time and the period of drug
administration, with maximal occurring when the limiting host
cell cycle length is a multiple of the chemotherapeutic period.
Analytical results further show that in fully periodic systems
elimination time, T, is given for t > § > 1/2:

T =10/|t— (8 +w)|.

Here, 6 is the duration of the period in which the drug effective,
and w is the period in which the drug dosage is below efficiency.
The point, T = 8§ + w, is a singular point with T being infinite.

This makes possible to assume that a classical non-
Markovian model of population dynamics [12, 14] is indeed
an appropriate tool to simulate the NP (PMC16) distribution
between malignant (fast expanding compartment) and the
hostile normal cell (slow expanding compartment) pools.
The above mentioned amphiphilic pharmacophore (PMC16,
cyclohexyl(C, )porphyne-based bivalent metal isotopes
nanocarrier; Fig. 1) is a suitable probe for our non-Markovian
simulation since this type of NPs was found capable to manifest
a clear and sharp cytostatic mode in acute myeloblast leukemia
and RB cell cultures [1, 5, 6].

A two-compartment model we proposed is fitted to the
following non-Markovian compatible pharmacokinetics data
with both inter-specimen and randomized effects on CL, V,
Q, and V2 corrected to an error best described the pattern
of residual error [12, 13, 16]. So this our model works out for
both PMC16 tumor uptake selectivity (fast proliferation caused

Fig. 1. Structure of PMC16 (cyclohexyl(C60)porphyrin), Me?* — carrying and
releasing nanoparticles with the marked membranotropic/amphiphilic properties [1]
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Table 1. Population turnover in Y79 and WERI-RB-1 cell lines

Parameter Meaning T, hr Ref
TG, Duration of G, phase 8.0 [9, 15]
Ty Duration of S phase 7.5 [8, 15]
Tem Duration of G,M phase 2.0 [8, 18]
Te, Duration of G, phase 3.0 [9, 15]
7;pu ptosis Duration of the apoptotic phase 4.0 [8, 9]

phenomenon) and a routine pharmacokinetic key points
prediction.

Inter-specimen covariant models

A. Pharmacokinetic model

(a—k,) (k,—P)
- exp—(ae t)+( -

B. Non-vectoral covariative model
CL=[0,OCCI +0,(WT - 75)] «exp (r]aj)

C= D/V-[ -exp—(ﬁ-t)]

ch: [6,—(GFR - 80) +0,] « exp (r]v/)
Ky = 0 ~exp ()
C. Population dynamics model

k21_ \% 'exp_( V/ t)
- v C)
CL
C = D, B- cexp (g)
7 0,+0CC, +0,«(WT~75)«exp (r]vj) _
+ 2]:/ e exp = (kf)
v, " p
D. Population parameters
6,=19.5
6,=0.198

Gompertzian model

The Gompertz equation based models were already used to
describe cancer growth dynamics [7, 11, 14], these formalisms
have been also applied to optimize some therapeutic strategies
dealing with antiangiogenic [11, 12] and radiation treatment
11, 13].

The model is fully deterministic. Cell cycle phases durations
T, have been discretized in several elementary age intervals
ae{l,..., N¢} where N is an integer such as t, =dt « N_. Here
dt is the time step of the cell cycle model. The cell density Moo
at age ain phase ¢ is governed by:

anw

SFTEM Ve, =P .
In this equation, ¢ € {G,, S, G, M, G, Apoptosis and a € {1,..
P, is the cell density prollferatron term in phase at age retrleved
from the cell cycle model. In these simulations, the intracellular
and extracellular conditions were identified for cells at the end
of G, phase.

Furthermore noting that Z Neo is constant, so we can

sum to obtain an expression for the pressure field of the form:

~Ve(kvp)=X P, .
xP

The computer program starts from an initial distribution
of neighboring RB and RT cells in each state {a, ¢}. The
compupations are performed using a splitting technique. We
run the cell cycle model for one time-step dt, then retrieve new
values for n, , and compute P, .. This drives to a system:

n
—2+Vewn )=0
ot veon,,)

on
““’+v-Vn (ZP,‘)H
oo a\g a9

ot

Applied to the cell division cycle key patterns (Table) represented
as a non-Markov population dynamics model organized in a
merry-go-round of subpopulations biologically identified as
phase (G,, S, G, and M), this might be re-formalized as:

ont, x) . on(t, x)
ot ot
n_(t0)=

T+l x~>x+1

d(t xn (¢ x) + K,

i—i+1

(& x)n,(t, x) =0
(t, x)n (t, x)dx

n(t o)_zf K, (& xn (& x)dx
along with the initial conditions (n,=0),_,_.

Cell death rates in phases are noted d, and transition rates
between phases, assumed to be time-periodic. K, ,. Phase i
(1 < i < /) may be one of the classical four G,, S G, and M,
but also an aggregated phase such as S-G,, or even a single
proliferating phase G,-S-G,-M, or, on the contrary, a subdivision
inside a phase, e.g., pre- or post-restriction point in G,; the
equation describes the evolution of the densities n, (t, x) of cells
having age x at time ¢t in phase i.

The above stated two systems that represent two
neighboring, fast and slow growing, cell populations are
physically apart from each other. Hence, in this system of
equations, function g, which represents anti-tumor drug
efficacy, is assumed, as is function # for cytotoxicity:

_ (t - ¢,) (D"%)
g(D, 1) = {1 + cos(2m = 7)) BT

whereas A\, v, €., a, B__, H, @,, Y, D, are positive constants,
identified on tumor growth curves or from literature data

[8, 15, 18], or else estimated.

1.0+ RB RT +1.0
o
Q
T05 5
KoK (NP
Fig. 2. The NP uptake selectivity prediction in a complete accessibility of
intracellular ligands. P — [NP] uptaken, units per cell; P, — intracellular initial

concentration of NP-ligands; K, — Gompertz equation vectoral K; K, — an NP
uptake steady state constant; K, — an efficient constant of saturation of a cellular
ligand pool at [NP] — 0.5 P
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The difference of behaviors between these two populations
of cells (RB-RT pair) with respect to drug response is coded as
¢®,— @, =13 hours.

Turning back to the roots, a damped harmonic
approximation stands for healthy (RT) cell population dynamics:

dP _ yp, i)
dt N }\P+ ‘/dist(b(t)
é—?z—pC+SCP
ar _
7—{—a—f(C,t)}Z—[3A+Y
t
dA_7_gz
dt ~ eq

>

where

cy4
ciA+Cv
andA p, g, 0B, Y, Z  F 9,Y, Cy are positive constants,
which, again, were identified on tumor growth curves or from
literature data [7, 10, 15], or else estimated.

These equations represent drug diffusion and elimination by
first order pharmacokinetics for concentrations in the plasmatic
and target cell compartments (P and C), from infusion in the
general circulation according to the instantaneous drug delivery
flow i (t) (@ representing a “tap on-tap off” function), and health
tissue homeostasis by a linear system showing a stable focus at
Z o Ag= B(Y - CXZeq), perturbed by the drug cytotoxicity function
which comes to strengthen the natural self-regulation coefficient a.

So our model, as derived from a Gompertz equations row,
is completely adequate to the tumor cell population dynamics:

—9, ) ’

t
f(Ct)= F(l + cos(2m 7

dP _ _\p + 0 g(p)

W_ dist
‘2—?: -vD + ¢ P
9B — a1 (2~ gD, 0B).

max

0.88

0.09

-0.69

-1.47
36.0
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Clearly, this is nothing but the way to represent exchanges
with quiescent population in a still linear model which normally
means to exclude feedback from quiescence to proliferation,
considering quiescence only as a sideway expansion cell tank:

%p(t, x) + % p(t, x) + {u+ K(x)}p(t, x) =0

pltx=0)=201-9) [ K@ p(te)de
p(t, x=0) =p, (x)
% QH=2f f _K(®) p(t, ©) de = vQ(1)
Q) =Q,

To emphasize a perspective proclaimed, this our model is to
reveal the action of a cytostatic drug enhancing the way out
of proliferating cells with density p(t, x) to quiescent cells with
density Q (f), the drug target here is # rate of escape at mitosis
towards the siding phase Q, £to be enhanced by a cytostatic
drug.

DISCUSSION
Tumor selective NP uptake. Probability and prediction

As seen from above, a probabilistic prognosis for the RB-
selective NP uptake relates predominantly on a ratio between
malignant and normal cell proliferation rates while the mass of
a cancer tissue per se (amount of RB cells) might be practically
neglected (Fig. 2). This derives from a predictive cell response
to a rapidly in situ diffusing probe (PMC16) once these Me?*-
nanocarriers arrive to the RB/RT frontier area. In this stochastic
scenario, however, a cellular lattice is nothing but a peculiarity
reflecting the target cell specific energy landscape [16, 19]
which makes the drug trapping probability dependent on the
EL motion and, therefore, on expanding dynamics of a most
rapidly growing compartment within a given RB/RT pair (Fig. 3).

12.0
7.0

Fig. 3. Probabilistic model for NPs distribution between RB and the neighboring RT cells as a function of the discriminative cell cycle turnover. Z-elimination
coefficient for malignant and the RB-surrounding normal cells (RT) estimated for the drug efficiency duration time (o) and the drug-free cell functioning time interval
(w). o is normally distributed within a variation range of o = 6/10, where remain constant while the inner rate of the “newborn” cell appearance is A = 2, for a starting

population size x(0) = 5

BECTHVK PIMY | 6, 2018 | VESTNIKRGMU.RU



ORIGINAL RESEARCH | NANOMEDICINE

A symbolic blue-red shift in Figures 2 and 3 marks a trend to
predominant accumulation of NPs in the most faster expanding
cell tank, RT.

So turning back to a background proceeding probabilistic
approach [12, 14], a tumor selective accumulation of the
PMC16-specific probe become predictable due to enormous
difference between RB and RT growth rates [8-10, 12]. This
allows a rate—discriminative RT-PMC16 uptake described by
our model (Fig. 2) working in accordance with:

A, =Kd[tga,/(tga,,— tga, )],

where K, is an Arnauld-Pitot disclaimer approximation constant
[16,19].

Paul Ehrlich’s “magic bullet”: dream or nightmare?

Meaning the end of a long lasting post-Virchowian era, a truly
prophetic outlook stated by Paul Ehrlich back in 1908-1913,
now well-known as a hope for an infamous magic bullet
in cellular pathology and pharmacology [8, 17], has been
eventually adopted within a contemporary drug targeted
delivery concept [5, 7, 19]. The latter requires a broad variety
of nanodevices, all sorts of the magic bullets, designed to
conduct both the towards-a-target navigated drug transfer and
a consequent in situ controlled drug release (1, 5, 17].
However, a new unclear horizon appears straight in
front of a marksman equipped with the magic bullet loaded
“cartridge”. Suppose a reasonable amount of the active drug
molecules or ions have reached the tumor location border
due to a perfect delivery performed by some nanocarrier.

References

1. Buchachenko AL. Magneto-Biology and Medicine. New York:
Nova Biomedical Publ., 2015.

2. Bukhvostov AA, Dvornikov AS, Ermakov KV, Kurapov PB,
Kuznetsov DA. Retinoblastoma: magnetic isotope effects might
make a differece in the current anti-cancer research strategy. Acta
Medica (Prague). 2017; 60 (2): 93-6.

3. Bukhvostov AA, Dvornikov AS, Ermakov KV, Kuznetsov DA.
Retinoblastoma case: shall we get a paramagnetic trend in
chemotherapy? Arch Cancer Res. 2017; 5 (4): 158-62.

4. Bukhvostov AA, Paviov KA, Ermakov KV, Sidoruk KN, Rybakova IV,
Kuznetsov DA, Roumiantsev SA. An atypical B-like DNA
Polymerase of retinoblastoma cells as a target for spin-selective
inhibitory cytostatics. J Fund Med Biol (Russian). 2018; 7 (2): 50-3.

5. Orlova MA, Osipova EY, Roumiantsev SA. Effect of Zn-
nanoparticles on leukemic cells and normal lymphocytes. Brit J
Med Med Res. 2012; 2 (1): 21-30.

6.  Orlov AP, Orlova MA, Trofimova TP, Kalmykov SN, Kuznetsov DA.
The role of zinc and its compounds in leukemia. J Biol Inorg
Chem. 2018; 23 (3): 347-62.

7. Siccardi M, Owen A. Towards a computational prediction of
nanoparticle pharmakokinetics and distribution. J In Silico & In
Vitro Pharmacol. 2016; 2 (1): 8-11.

8. Augsburger JJ, Chow CML, Dyer V, Roussel MF. Translating
science into survival. In: Cajjar A, Pappo A, editors. St. Jude's
Children's Research Hospital Report. St. Judes CRH Publ.:
Memphis, TN — Cincinnati, OH. 2016; 6-55.

9. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X,
Ulyanov A. A novel retinoblastoma therapy from genomic and
epigenetic analyses. Nature. 2012; 481 (7381): 329-34.

A good shot with the bullet though. Then a tumor selective
intralization of a drug becomes a rather obscure step in a
whole pharmacokinetic scenario. Indeed, no matter how
precise the bullet’s trajectory is, a further distribution of
NPs between the neighboring malignant and normal tissue
compartments is the case.

That’s why a predictive model we proposed is in fact
a promising tool the one might need to come up with the
trustworthy path/dose/exposition plan to follow and a strategic
roadmap to observe upfront of experiment.

After all, a direct Schlemm channel drug influx and/or
the intraocular administration paths, often applicable to RB
particular case [8], would make this approach not only possible
but even preferable as well. A numerous holistic impacts,
ineluctable when the routine parenteral administration paths
involved, should be therefore minimized or merely neglected as
long as the RB chemotherapy is in a focus.

CONCLUSIONS

A mathematical model proposed is found sustainable to
predict a quantitative extent of tumor selective accumulation of
medicinal nanoparticles in human retinoblastoma cells as long
as these NPs are amphiphilic and membranotropic agents with
a marked mode for permeability into the target cell.

The C,,-fullerene based Me** — carrying-n-releasing
members of PMC16 family fit the above specified requirements.
So our RB/RT proliferation “rate gap” focused computational
techniqgue might make a difference in optimization of
the preclinical research program for these and related
pharmacophores.

10. Bozic I, Nowak MA. Resisting resistance. Ann Rev Cancer Biol.
2017; 1 (1): 203-21.

11. Bassukas ID. Comparative Gompertzian analysis of alterations of
tumor growth patterns. Cancer Res. 1994; 54 (16): 4385-92.

12. Byme H, Prezidosi L. Modelling solid tumor growth using the
theory of mixtures. Math Med Biol. 2003; 20 (4): 341-66.

13.  Komarova NL. Mathematical modelling of tumorigenesis: mission
possible. Curr Opinion Oncol. 2005; 17 (1): 39-43.

14. Trapp S, Horobin RW. A predictive model for the selective
accumulation of chemicals in tumor cells. Eur Biophys J. 2005;
34 (7): 959-66.

15. Udvardi L, Lakatos J, Loewenhaupt RK. Dividing Cell. In Vitro-In
Silico Models. Szeged, Budapest: Alba Regia, 2017.

16. Lehman RJ, Waugh TS, Rattenau KR, Bielka H. An expanding
compartment mode to implement a guest probe diffusion input
adopted by the comprehensive Gunault muxtures theory. In:
Sieliwanowicz B, Martell SJ, edsitors.Combinational Dynamics
in Systems Theory. Sydney—Melbourne—Perth: Adler & Adler
Publ., 2018; 116-37.

17. Lamprecht A, Pellecker J. Anti-cancer nano-size agents:
targeting paths and pharmacokinetics. In: Lamprecht A, editor.
Nanotherapeutics. Drug Delivery Concepts in Nanoscience.
NY—London—Singapore: Pan Stanford Publ., 2018; 92-101.

18. Altinok A, Gonze D, Levi F, Goldbeter A. An Automaton model for
the cell cycle. Interface Focus. 2011; 1 (1): 36-47.

19. Delbreaux J, Pitot CA. Mathematical model in a new drug
preclinical trial. Predictive power and limitations. Leuven—
Ghent—Antwerp: Leuven University Press, 2018.

BULLETIN OF RSMU | 6, 2018 | VESTNIKRGMU.RU



OPUIMMHAJIbHOE NCCJIEQOBAHNE | HAHOMEOVLIMHA

Jlutepatypa

1.

2.

Buchachenko AL. Magneto-Biology and Medicine. New York:
Nova Biomedical Publ., 2015.

Bukhvostov AA, Dvornikov AS, Ermakov KV, Kurapov PB,
Kuznetsov DA. Retinoblastoma: magnetic isotope effects might
make a differece in the current anti-cancer research strategy. Acta
Medica (Prague). 2017; 60 (2): 93-6.

Bukhvostov AA, Dvornikov AS, Ermakov KV, Kuznetsov DA.
Retinoblastoma case: shall we get a paramagnetic trend in
chemotherapy? Arch Cancer Res. 2017; 5 (4): 158-62.
Bukhvostov AA, Paviov KA, Ermakov KV, Sidoruk KN, Rybakova IV,
Kuznetsov DA, Roumiantsev SA. An atypical B-like DNA
Polymerase of retinoblastoma cells as a target for spin-selective
inhibitory cytostatics. J Fund Med Biol (Russian). 2018; 7 (2): 50-3.
Orlova MA, Osipova EY, Roumiantsev SA. Effect of %Zn-
nanoparticles on leukemic cells and normal lymphocytes. Brit J
Med Med Res. 2012; 2 (1): 21-30.

Orlov AP, Orlova MA, Trofimova TP, Kalmykov SN, Kuznetsov DA.
The role of zinc and its compounds in leukemia. J Biol Inorg
Chem. 2018; 23 (3): 347-62.

Siccardi M, Owen A. Towards a computational prediction of
nanoparticle pharmakokinetics and distribution. J In Silico & In
Vitro Pharmacol. 2016; 2 (1): 8-11.

Augsburger JJ, Chow CML, Dyer V, Roussel MF. Translating
science into survival. In: Cajjar A, Pappo A, editors. St. Jude's
Children's Research Hospital Report. St. Judes CRH Publ.:
Memphis, TN — Cincinnati, OH. 2016; 6-55.

Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X,
Ulyanov A. A novel retinoblastoma therapy from genomic and
epigenetic analyses. Nature. 2012; 481 (7381): 329-34.

BECTHVK PIMY | 6, 2018 | VESTNIKRGMU.RU

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Bozic I, Nowak MA. Resisting resistance. Ann Rev Cancer Biol.
2017; 1 (1): 203-21.

Bassukas ID. Comparative Gompertzian analysis of alterations of
tumor growth patterns. Cancer Res. 1994; 54 (16): 4385-92.
Byrne H, Prezidosi L. Modelling solid tumor growth using the
theory of mixtures. Math Med Biol. 2003; 20 (4): 341-66.
Komarova NL. Mathematical modelling of tumorigenesis: mission
possible. Curr Opinion Oncol. 2005; 17 (1): 39-43.

Trapp S, Horobin RW. A predictive model for the selective
accumulation of chemicals in tumor cells. Eur Biophys J. 2005;
34 (7). 959-66.

Udvardi L, Lakatos J, Loewenhaupt RK. Dividing Cell. In Vitro-In
Silico Models. Szeged, Budapest: Alba Regia, 2017.

Lehman RJ, Waugh TS, Rattenau KR, Bielka H. An expanding
compartment mode to implement a guest probe diffusion input
adopted by the comprehensive Gunault muxtures theory. In:
Sieliwanowicz B, Martell SJ, edsitors.Combinational Dynamics
in Systems Theory. Sydney—Melbourne—Perth: Adler & Adler
Publ., 2018; 116-37.

Lamprecht A, Pellecker J. Anti-cancer nano-size agents:
targeting paths and pharmacokinetics. In: Lamprecht A, editor.
Nanotherapeutics. Drug Delivery Concepts in Nanoscience.
NY—London—Singapore: Pan Stanford Publ., 2018; 92-101.
Altinok A, Gonze D, Levi F, Goldbeter A. An Automaton model for
the cell cycle. Interface Focus. 2011; 1 (1): 36-47.

Delbreaux J, Pitot CA. Mathematical model in a new drug
preclinical trial. Predictive power and limitations. Leuven—
Ghent—Antwerp: Leuven University Press, 2018.




