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HIGH-SPEED BRAIN-COMPUTER COMMUNICATION INTERFACE BASED 
ON CODE-MODULATED VISUAL EVOKED POTENTIALS

Brain-computer interface (BCI) technologies are actively used in clinical practice to communicate with patients unable to speak and move. Such interfaces imply 

identifying potentials evoked by stimuli meaningful to the patient in his/her EEG and interpreting these potentials into inputs for the communication software. The 

stimuli can take form of highlighted letters on a screen, etc. This study aimed to investigate EEG indicators and assess the command input performance of a 

promising type of BCI utilizing the so-called code-modulated visual evoked potentials (CVEP) appearing in response to a certain sequence of highlights of the desired 

letter. The operation of the interface was studied on 15 healthy volunteers. During the experiments, we changed the speed of stimuli demonstration and inverted the 

order of flashing. It was established that the optimal speed of stimulation significantly depends on individual traits of the person receiving the stimuli, and inversion 

of their sequence does not affect operation of the interface. The median accuracy of selection of commands was as follows: 1 s stimulation cycle mode — 0.96 

and 0.95 (information transfer rate 142 and 141 bit per minute); 2 s stimulation cycle mode — 1; 0.5 s cycle — 0.33. The evoked potentials were most expressed 

at the Oz site. It was assumed that CVEP-based brain-computer interfaces can be optimized through individualization of the set of stimulation parameters. 
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Р. К. Григорян1      , Д. Б. Филатов1,2, А. Я. Каплан1 

ВЫСОКОСКОРОСТНОЙ КОММУНИКАЦИОННЫЙ ИНТЕРФЕЙС МОЗГ-КОМПЬЮТЕР 
НА ОСНОВЕ КОДИРОВАННЫХ ЗРИТЕЛЬНЫХ ВЫЗВАННЫХ ПОТЕНЦИАЛОВ

Технологии интерфейсов мозг-компьютер (ИМК) активно используют в клинической практике для обеспечения коммуникации с пациентами, 

не способными к речи и движениям. Ввод команд в компьютер посредством таких интерфейсов осуществляют на основе выделения в ЭЭГ вызванных 

потенциалов в ответ на значимые для пользователя стимулы, например подсвеченные на экране буквы. Целью работы было исследовать показатели 

ЭЭГ и эффективность ввода команд в перспективном типе ИМК на основе так называемых кодированных вызванных потенциалов, возникающих в 

ответ на определенную последовательность подсветок нужной буквы. На 15 здоровых добровольцах изучали работу такого интерфейса на разных 

скоростях подачи стимульных последовательностей при их инвертировании, когда подсветку и ее отсутствие меняли местами. Показано, что 

оптимальное значение скорости стимуляции имеет значительную индивидуальную вариабельность, а инверсия стимульной последовательности не 

оказывает влияния на работу интерфейса. Медианная точность выбора команд составила: в режимах с циклом стимуляции 1 с — 0,96 и 0,95 (скорость 

передачи информации 142 и 141 бит/мин); в режиме со стимульным циклом 2 с — 1; с циклом 0,5 с — 0,33. Максимальную выраженность вызванных 

потенциалов наблюдали в отведении Oz. Сделано предположение о том, что оптимизация нейроинтерфейсов на основе кодированных вызванных 

потенциалов возможна на основе индивидуального подбора параметров стимуляции. 
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Brain-computer interface (BCI) is a technology that allows 
patients with speech and movement disorders to control a 
computer through the analysis of correlates of their neuronal 
activity. BCI requires the user to focus attention either on 
internal images, e.g., limb movements, or on objects on the 

screen, like letters needed at the given moment. BCI systems 
translate such mental efforts into computer input commands 
by registering specific EEG markers peculiar to such efforts 
[1–3]. Interfaces that make use of visual potentials evoked, for 
example, by flashing objects on the screen, offer a wide range 
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of EEG-detectable commands, their amount being the same 
as that of on-screen stimuli. P300 component is the traditional 
EEG marker signaling of the user's attention to a specific 
event, like flashing a certain letter [4, 5]. Such interfaces have 
lately been actively introduced into the medical rehabilitation 
practice to enable communication with patients suffering from 
severe speech and movement disorders [6]. Their reliability in 
translating commands given by cognitively intact patients is 
sufficient, but the speed of operation is quite low, which is a 
drawback. For example, a comparison of BCI capabilities as 
used by healthy people and patients with amyotrophic lateral 
sclerosis has revealed that the text typing rate does not exceed 
2–3 letters per minute with each target object shown 14 times. 
With the accuracy in both groups exceeding 95%, such a rate 
translates to 11–14 bits per minute (bpm) [7], which makes BCI 
using P300 as marker uncomfortable even for healthy people. 
Code-modulated visual evoked potentials (CVEP) promise to 
speed up BCI transfer rates. CVEP is a joint EEG-detectable 
response to the special irregular frequency sequences of 
flashes of the required on-screen object. Such sequences 
stimulate a steady state visually evoked potential (SSVEP) 
registered by EEG, which is phase-locked with stimulation. 
Phase synchronization, which is also peculiar to SSVEP-
enabled BCI featuring regular frequency stimulation, allows the 
evoked potential to retain the properties of the stimuli sequence 
to a certain degree, in particular — its cyclicity, autocorrelation 
and spectral characteristics. Presenting a number of visual 
stimuli through a number of different sequences that correlate 
with each other at least minimally allows distinguishing between 
the evoked potentials brought by different stimuli through a 
correlation analysis. There are various sets of binary sequences 
with suitable cross-correlation properties, such as the Gold 
codes, Barker codes and m-sequences. They are used to 
identify signals carried on the same frequency in various 
spheres, like mobile communications and satellite navigation.

M-sequence is a pseudo-random binary sequence that has 
a single peak of autocorrelation function at zero shift. With a 
cyclic shift, one m-sequence can produce several sequences 
not correlated with each other, which facilitates its application 
in BCI featuring a large number of stimuli, as it shortening the 
classifier learning period. To distinguish between the potentials 
evoked by different stimuli, it is necessary to assemble a 
learning sample. Such a sample should contain potentials 
corresponding to each stimulus. With each stimulus using its 
own binary sequence generated by a single m-sequence, it is 
enough to get the reference evoked potential peculiar only to 
that binary sequence. Then, it is possible to detect the target 
stimulus by shift of the correlation function's peak between 
spatially filtered sections of the recorded EEG and that reference 
evoked potential. As a result, the duration of learning does not 
depend on the number of different stimuli, which allows using 
the amount of stimuli sufficient to print a text.

Canonical correlation analysis of EEG allows reliable 
detection of short instances of code-modulated evoked 
potentials synchronous with the flashes of the currently needed 
on-screen object. The number of stimuli activation repetition 
cycles therein can be as low as 2 or 3. Thus enabled BCI offer 
information transfer rates in excess of 100 bpm [8]. Both EEG 
and electrocorticogram [9] allow registering code-modulated 
evoked potentials; they can be used to optimize BCI operation 
to adjust to error-related potentials and to utilize color gamut in 
the stimulus environment [11].

Seeking to find the optimal modes of code-modulated 
on-screen object flashing for BCI, we tested operation with 
different sequences and rates of stimuli flashes.

METHODS

Participants 

Fifteen healthy volunteers (7 female and 8 male) aged 18–30 years 
participated in the study. The inclusion criteria were: no 
history of neurological diseases, including epilepsy; normal or 
corrected vision. The exclusion criteria were: age different from 
the required; history of neurological diseases; vision problems.

EEG registration

We used the Neurovisor-BMM 40 EEG amplifier (Meditsinskiye 
Computerniye Systemy; Russia) to record biopotentials, and 
22 channels (FCz, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, 
CP4, P5, P3, Pz, P4, P6, PO3, POz, PO4, O1, Oz, O2) with 
AFz as a grounding electrode and two averaged ear electrodes 
as reference. Before recording, we checked the interelectrode 
impendance; the recording was started after the resistance 
was brought to the values below 10 kOhm. The sampling rate 
was 500 Hz. 

Experimental rig 

The experiment was controlled from a computer using custom 
software developed by the authors in C++. The stimuli were 
shown to participants on a 24-inch display with a refresh rate 
of 120 Hz. The participants sat in a chair approximately 60 
cm away from the display. A photosensor was used to ensure 
synchronization of EEG recording and stimuli presentation.

Stimuli presentation

The objects were presented in 32 square cells (4 by 8 table) 
containing letters on a black background. The stimulation was 
effected through changing the color of the cell from black to white. 

The color change algorithm was determined by a 63-bit 
m-sequence. Each cell changed color in accordance with its 
own m-sequence derived from the basis sequence through 
2-bit cyclic shifts. Thus, activation of the first cell followed the 
basis sequence, that of the second cell was shifted by 2 bits, 
of the 10th — by 18 bits, etc. Overall, we used two basis 
m-sequences: basis — [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 
1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 
0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0] and inverted — [1, 1, 1, 1, 1, 0, 0, 0, 
0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 
0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1].

There are no other 63-bit m-sequences that are not cyclic 
shifts of these. The inverted sequence is similar to the basis 
one in terms of autocorrelation properties, but it generates a 
significantly different visual stimulation. 

In the course of our experiment, we tested four modes 
of BCI, each with its own m-sequence and stimulation rate. 
The first two modes featured basis and inverted sequences, 
respectively. The period was 1 second. Parameters of the third, 
"slow" mode — basis sequence and 2-second period, those of 
the fourth, "fast" mode — period of 500 ms. 

Thus, the duration of one bit in white and black colors in 
standard, fast and slow modes were approximately 16, 8 and 
32 ms, respectively.

Structure of the study

Each volunteer participated in 4 experimental sessions. The order 
of modes was selected at random after briefing and electrodes 
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Fig. 1. Neurointerface utilization by users: indicators. 1 — command input accuracy; 2 — average command input time (in seconds); 3 — information transfer rate, 
bpm; A — basis stimulus sequence; B — inverted; C — slow mode; D — fast mode
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placement. Each mode session began with the classifier 
learning from the participant's viewing one of the stimuli for 
40 full sequence presentation periods. After that, the participant 
had to enter 32 commands following a predetermined order of 
concentration on stimuli. Entering a command took a careful 
look at a particular letter while concentrating on its flashes. 
After a few seconds, the system produces an answer, which 
could be correct or wrong. Then the stimulation is stopped. 
Following a break of several seconds, the stimulation resumed 
and the participant had to try to enter another command.

The command was considered entered when the classifier 
reached a certain threshold. The accuracy of the choice of 
commands was determined as the ratio of correctly entered 
commands to the total number of input attempts. 

Pattern classification

Canonical correlation analysis allows obtaining the weights of 
channels used to spatially filter EEG and to isolate a significant 
response to the sequence of stimuli. Weights obtained through 
analyzing EEG readings recorded while learning were used to 
decrease the signal's dimension. Learning yielded a single-
channel m-sequence response signal averaged over 40 full 
periods. During actual operation, a one-dimensional signal 
peculiar to demonstration of the m-sequence in full triggers 
compilation of the function describing its correlation with the 
signal obtained during learning. The command selected by 
the user is determined by the shift of peak of this correlation 
function. Determining the number of the target stimulus takes 
division of the correlation function's time shift maximum by 
the time of one bit implementation and the shift between 
successive stimuli.

Data analysis

We used the scipy 1.1.0 package [12] to process the results, 
normalized cross-correlation to build correlation maps and 
applied the Wilcoxon test (Holm-Sidak multiple comparison 
correction) to pairwise comparisons.

RESULTS

Assessment of classification accuracy 
and information transfer rate

In slow mode, with the m-sequence period of 2 s, the median 
accuracy of command selection reached 1 (Fig. 1). In basis 
and inverted m-sequence modes the accuracy was 0.96 and 
0.95, respectively. In the fast mode the median accuracy was 
0.33, which makes it the only mode the accuracy of which 
is significantly different from that of all other modes with the 
multiple comparison correction applied (p < 0.05). However, 
one participant showed the accuracy of 0.96 in this mode, a 
result that cannot be explained by random reasons since it was 
preceded by input of 32 commands.

The command input rate is another important property of 
BCI. In the modes with m-sequence period of 1 s, the median 
time required to identify one command was 2 s. In the slow 
mode, the figure was 3.5 s, in the fast mode — 1.2 s.

Information transfer rate is an integrative indicator of the 
BCI quality: it combines both the rate and the accuracy of 
command selection. We used the Shannon definition as applied 
to neurocomputer interfaces [13] to calculate the indicator. 
The median information transfer rate in the basis and inverted 
sequence modes was 141 and 142 bpm, in the slow mode — 
93 bpm, while the fast mode yielded the smallest value: 37 bpm, 
which is the result of low accuracy in command selection. In the 
latter mode, however, one user was able to enter commands 
accurately and showed the highest transfer rate of 287 bpm, with 
the command input time being 1 second and accuracy of 0.96. 
The information transfer rate at the m-sequence period of 1 second 
was significantly different from the slow mode (Z = 2.7; p = 0.019). 

The shape of evoked potentials 
and topographic distribution of evoked activity

Figure 2 shows the shape of code-modulated evoked potentials 
averaged relative to the first bit of the sequence, restored for 
the zero-shift m-sequence. 
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Fig. 2. Averaged evoked potentials registered during stimulation, all channels, shifted to zero shift relative to the basis m-sequence. The stimulus sequence is given in 
gray. One curve — one channel of the averaged EEG. The potential averaged between all channels is given in black

Fig. 3. Correlation function's maximum value maps, averaged for all participants, for averaged evoked potential of each channel (Fig. 2) and individual evoked potentials 
for single m-sequences. This indicator allows assessing the intensity of potential in all channels
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As a quantitative characteristic, we used the correlation 
between the averaged evoked potential and single potentials 
corresponding to single m-sequences. Figure 3 shows the 
maps of maximum values of normalized cross-correlations 
between averaged evoked potentials and responses to single 
sequences.

According to the figure, the degree of similarity between 
evoked potentials reaches its maximum in occipital channels. 
All modes that allowed a high accuracy of command selection 
had the highest correlation degree at the Oz site. The maximum 
correlation was registered in 8 channels: P4, P6, PO3, POz, 
PO4, O1, O2, Oz. The absolute values of the cross-correlation 
maxima do not differ significantly between the modes when 
compared in corresponding channels. In the fast mode, 
localization of evoked potentials was less pronounced, which is 
probably one of the reasons behind the poorest results shown 
by the participants.

DISCUSSION

Research of the CVEP-enabled BCI reveals a number of 
interesting patterns that play a role in the development of a 
high-quality medical neurocommunicator for a wide range of 

patients. First of all, it is the ratio between rate, accuracy of 
input and the overall information transfer rate peculiar to a 
specific modification of the interface. Obviously, from the user's 
viewpoint, the main property of a BCI is the information transfer 
rate. The data obtained indicate that this type of interface is 
capable of a transfer rate severalfold greater than that of the 
traditional BCI making use of P300, which makes the new 
interface a promising tool in the clinical practice. In the first 
three modes, the information transfer rate is within the limits 
usual for interfaces of this type [8, 14]. However, one participant 
managed to reach the rate of 287 bpm in the fast mode, which 
proved impossible for the majority of other participants. This 
is an important fact; being unique for the sample, this result 
substantiates the development of a BCI that would allow fine 
tuning the parameters to individual characteristics of its user 
with the aim to find their optimal combination (stimulation rate 
in particular). Such an approach can help overcome the known 
problems associated with adaptation of results of laboratory 
research involving healthy participants to clinical practice [15]. 
Another problem it would solve is the so-called BCI-illiteracy, 
i.e. inability of patients to learn to operate a brain-computer 
interface [16]. There are different approaches to tackling these 
problems, including modification of the training stage [17] and 
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the individualization of interfaces. Fine tuning the m-sequence 
carrier frequency and its period could help find optimal values 
that maximize the information transfer rate for each specific 
user. In fact, this is a routine already practiced when tuning 
P300-based BCI [18]. Unfortunately, modern displays, even 
those with high refresh rates, do not allow sufficient flexibility 
in adjustment of the stimulus sequence period frequency 
for CVEP BCI. For example, in the context of this study we 
were unable to demonstrate a sequence with the period of 
0.8 seconds, which suggests that designing a special device 
for such purpose would be feasible. Several such attempts 
have already been made (based on evoked potentials) [19], but 
the specific implementations presented offer a low information 
transfer rate due to the small number of stimuli.

CONCLUSIONS

The results of this study suggest that optimizing BCI operation 
for a user requires fine tuning the parameters depending on the 
individual characteristics of each such user. We have shown 
that inverting the coding stimulus sequence does not affect the 
accuracy of selection of commands by BCI users, which translates 
into equal applicability of both direct and inverted stimulation 
modes. At the same time, faster modes of BCI operation with 
the sequences twice shorter proved to be suboptimal for the 
majority of participants of the experiment. The significant individual 
differences in accuracy and information transfer rate revealed by 
this study suggest that it is possible to optimize BCI through its 
fine-tuning to the specifics of the given patient.
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