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Brain-computer interface (BCI) technologies are actively used in clinical practice to communicate with patients unable to speak and move. Such interfaces imply
identifying potentials evoked by stimuli meaningful to the patient in his/her EEG and interpreting these potentials into inputs for the communication software. The
stimuli can take form of highlighted letters on a screen, etc. This study aimed to investigate EEG indicators and assess the command input performance of a
promising type of BCI utilizing the so-called code-modulated visual evoked potentials (CVEP) appearing in response to a certain sequence of highlights of the desired
letter. The operation of the interface was studied on 15 healthy volunteers. During the experiments, we changed the speed of stimuli demonstration and inverted the
order of flashing. It was established that the optimal speed of stimulation significantly depends on individual traits of the person receiving the stimuli, and inversion
of their sequence does not affect operation of the interface. The median accuracy of selection of commands was as follows: 1 s stimulation cycle mode — 0.96
and 0.95 (information transfer rate 142 and 141 bit per minute); 2 s stimulation cycle mode — 1; 0.5 s cycle — 0.33. The evoked potentials were most expressed
at the Oz site. It was assumed that CVEP-based brain-computer interfaces can be optimized through individualization of the set of stimulation parameters.
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BbICOKOCKOPOCTHOW KOMMYHUKALMOHHbIA UHTEP®ENC MO3-KOMIMbIOTEP
HA OCHOBE KOAIMPOBAHHbIX 3PUTESIbHbIX BbISBAHHbIX MOTEHLMAOB
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TexHonornn nHTepdencos mMosr-komnbtotep (MMK) akTUBHO MCMONB3YIOT B KIMHUYECKOW NMPaKTUKe ANs 00eCneveHnss KOMMyHUKauum C nauneHTamu,
He CMOCOBHBIMU K peym 1 ABMKEHVSIM. BBOL, KOMaHf, B KOMMbIOTEP NOCPEACTBOM TakX MHTEPMENICOB OCYLLECTBNSIOT Ha OCHOBE BblaeneHst B 93T BbI3BaHHbIX
MOTEeHLMANoB B OTBET Ha 3HaYMMble A1 MOSb30BaTeNs CTUMYIIbl, HANPVMeP NOACBEYeHHbIe Ha dKpaHe BykBbl. Lienbto paboTbl 66110 UcCnefoBaTh nokasatenu
B3I 1 apheKTNBHOCTL BBOAA KOMaHL, B nepcrnekTnesHoM Tune VIMK Ha oCHOBe Tak HasblBaeMbiX KOAMPOBaHHbIX BbI3BAHHBIX MOTEHLMANOB, BO3HUKAOLLWX B
OTBET Ha OMNpefeneHHylo NoCNefoBaTeNbHOCTb NOACBETOK HyXHON BykBbl. Ha 15 300p0oBbIX [06POBOMbLAX M3ydan paboTy Takoro MHTepdelica Ha pasHbix
CKOPOCTSIX Mofa4qn CTUMYMbHbIX MOCNEA0oBATENBHOCTEN MPU UX MHBEPTUPOBaHWM, KOrAa MOACBETKY W ee OTCYTCTBME MEeHsM MecTamu. [lokasaHo, 4To
OMTUMaIBHOE 3HAa4YEHVEe CKOPOCTU CTUMYMALMM MMEET 3HAYMTENbHYIO MHOMBMOYaNbHYIO BapuabensHOCTb, a MHBEPCUS CTVMYSIBHON MOCNefoBaTeNsHOCTY He
0Kas3blBaeT BUSHNSA Ha paboTy nHTepdeica. MeayiaHHas TOYHOCTb BbIGopa KOMaHa, COCTaBua: B peXmMax ¢ LIMKIOM cTuMynsumm 1 ¢ — 0,96 1 0,95 (ckopocTb
nepefayv nHdopmaumm 142 n 141 6UT/MUH); B peXXnMe o CTUMYbHBIM LkIoM 2 ¢ — 1; ¢ umknom 0,5 ¢ — 0,33. MakcumMarnbHyto BbIPaXXEHHOCTb BbI3BaHHbIX
noTeHumanos Habmopaanu B oteeaeHnn Oz. CaenaHo NpeanonioXkeHre O TOM, YTO OMTVMU3aUMsa HEMPOUHTEPMENCOB Ha OCHOBE KOAMPOBAHHbBIX BbI3BaHHbBIX
MOTEHLMANOB BO3MOXHA Ha OCHOBE MHAMBMAYaNbHOrO Noadopa NapameTpoB CTUMYMSLIAN.
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Brain-computer interface (BCI) is a technology that allows  screen, like letters needed at the given moment. BCI systems
patients with speech and movement disorders to control a  translate such mental efforts into computer input commands
computer through the analysis of correlates of their neuronal by registering specific EEG markers peculiar to such efforts
activity. BCI requires the user to focus attention either on  [1-3]. Interfaces that make use of visual potentials evoked, for
internal images, e.g., limb movements, or on objects on the  example, by flashing objects on the screen, offer a wide range
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of EEG-detectable commands, their amount being the same
as that of on-screen stimuli. P300 component is the traditional
EEG marker signaling of the user's attention to a specific
event, like flashing a certain letter [4, 5]. Such interfaces have
lately been actively introduced into the medical rehabilitation
practice to enable communication with patients suffering from
severe speech and movement disorders [6]. Their reliability in
translating commands given by cognitively intact patients is
sufficient, but the speed of operation is quite low, which is a
drawback. For example, a comparison of BCI capabilities as
used by healthy people and patients with amyotrophic lateral
sclerosis has revealed that the text typing rate does not exceed
2-3 letters per minute with each target object shown 14 times.
With the accuracy in both groups exceeding 95%, such a rate
translates to 11-14 bits per minute (bpm) [7], which makes BCI
using P300 as marker uncomfortable even for healthy people.
Code-modulated visual evoked potentials (CVEP) promise to
speed up BCI transfer rates. CVEP is a joint EEG-detectable
response to the special irregular frequency sequences of
flashes of the required on-screen object. Such sequences
stimulate a steady state visually evoked potential (SSVEP)
registered by EEG, which is phase-locked with stimulation.
Phase synchronization, which is also peculiar to SSVEP-
enabled BCI featuring regular frequency stimulation, allows the
evoked potential to retain the properties of the stimuli sequence
to a certain degree, in particular — its cyclicity, autocorrelation
and spectral characteristics. Presenting a number of visual
stimuli through a number of different sequences that correlate
with each other at least minimally allows distinguishing between
the evoked potentials brought by different stimuli through a
correlation analysis. There are various sets of binary sequences
with suitable cross-correlation properties, such as the Gold
codes, Barker codes and m-sequences. They are used to
identify signals carried on the same frequency in various
spheres, like mobile communications and satellite navigation.

M-sequence is a pseudo-random binary sequence that has
a single peak of autocorrelation function at zero shift. With a
cyclic shift, one m-sequence can produce several sequences
not correlated with each other, which facilitates its application
in BCI featuring a large number of stimuli, as it shortening the
classifier learning period. To distinguish between the potentials
evoked by different stimuli, it is necessary to assemble a
learning sample. Such a sample should contain potentials
corresponding to each stimulus. With each stimulus using its
own binary sequence generated by a single m-sequence, it is
enough to get the reference evoked potential peculiar only to
that binary sequence. Then, it is possible to detect the target
stimulus by shift of the correlation function's peak between
spatially filtered sections of the recorded EEG and that reference
evoked potential. As a result, the duration of learning does not
depend on the number of different stimuli, which allows using
the amount of stimuli sufficient to print a text.

Canonical correlation analysis of EEG allows reliable
detection of short instances of code-modulated evoked
potentials synchronous with the flashes of the currently needed
on-screen object. The number of stimuli activation repetition
cycles therein can be as low as 2 or 3. Thus enabled BCI offer
information transfer rates in excess of 100 bpm [8]. Both EEG
and electrocorticogram [9] allow registering code-modulated
evoked potentials; they can be used to optimize BCI operation
to adjust to error-related potentials and to utilize color gamut in
the stimulus environment [11].

Seeking to find the optimal modes of code-modulated
on-screen object flashing for BCI, we tested operation with
different sequences and rates of stimuli flashes.
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METHODS
Participants

Fifteen healthy volunteers (7 female and 8 male) aged 18-30 years
participated in the study. The inclusion criteria were: no
history of neurological diseases, including epilepsy; normal or
corrected vision. The exclusion criteria were: age different from
the required; history of neurological diseases; vision problems.

EEG registration

We used the Neurovisor-BMM 40 EEG amplifier (Meditsinskiye
Computerniye Systemy; Russia) to record biopotentials, and
22 channels (FCz, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2,
CP4, P5, P3, Pz, P4, P6, PO3, POz, PO4, O1, Oz, O2) with
AFz as a grounding electrode and two averaged ear electrodes
as reference. Before recording, we checked the interelectrode
impendance; the recording was started after the resistance
was brought to the values below 10 kOhm. The sampling rate
was 500 Hz.

Experimental rig

The experiment was controlled from a computer using custom
software developed by the authors in C++. The stimuli were
shown to participants on a 24-inch display with a refresh rate
of 120 Hz. The participants sat in a chair approximately 60
cm away from the display. A photosensor was used to ensure
synchronization of EEG recording and stimuli presentation.

Stimuli presentation

The objects were presented in 32 square cells (4 by 8 table)
containing letters on a black background. The stimulation was
effected through changing the color of the cell from black to white.

The color change algorithm was determined by a 63-bit
m-sequence. Each cell changed color in accordance with its
own m-sequence derived from the basis sequence through
2-bit cyclic shifts. Thus, activation of the first cell followed the
basis sequence, that of the second cell was shifted by 2 bits,
of the 10th — by 18 bits, etc. Overall, we used two basis
m-sequences: basis—[0,0,0,0,0,1,1,1,1,1,0,1,1,1,1,0,0,1,1,
1,0,1,0,1,1,0,0,0,0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,1,0,0,1,0,0,
0,10,0,1,1,0,0,1,0,1,0,1,0]and inverted —[1,1,1,1,1,0,0,0,
0,0,1,0,0001,10,001,01,0,0,1,1,1,1,0,1,0,0,0,1,1,1,0,
0,1,001,0,1,1,0,1,1,1,0,1,1,0,0,1,1,0,1,0,1,0, 1].

There are no other 63-bit m-sequences that are not cyclic
shifts of these. The inverted sequence is similar to the basis
one in terms of autocorrelation properties, but it generates a
significantly different visual stimulation.

In the course of our experiment, we tested four modes
of BCI, each with its own m-sequence and stimulation rate.
The first two modes featured basis and inverted sequences,
respectively. The period was 1 second. Parameters of the third,
"slow" mode — basis sequence and 2-second period, those of
the fourth, "fast" mode — period of 500 ms.

Thus, the duration of one bit in white and black colors in
standard, fast and slow modes were approximately 16, 8 and
32 ms, respectively.

Structure of the study

Each volunteer participated in 4 experimental sessions. The order
of modes was selected at random after briefing and electrodes
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placement. Each mode session began with the classifier
learning from the participant's viewing one of the stimuli for
40 full sequence presentation periods. After that, the participant
had to enter 32 commands following a predetermined order of
concentration on stimuli. Entering a command took a careful
look at a particular letter while concentrating on its flashes.
After a few seconds, the system produces an answer, which
could be correct or wrong. Then the stimulation is stopped.
Following a break of several seconds, the stimulation resumed
and the participant had to try to enter another command.

The command was considered entered when the classifier
reached a certain threshold. The accuracy of the choice of
commands was determined as the ratio of correctly entered
commands to the total number of input attempts.

Pattern classification

Canonical correlation analysis allows obtaining the weights of
channels used to spatially filter EEG and to isolate a significant
response to the sequence of stimuli. Weights obtained through
analyzing EEG readings recorded while learning were used to
decrease the signal's dimension. Learning yielded a single-
channel m-sequence response signal averaged over 40 full
periods. During actual operation, a one-dimensional signal
peculiar to demonstration of the m-sequence in full triggers
compilation of the function describing its correlation with the
signal obtained during learning. The command selected by
the user is determined by the shift of peak of this correlation
function. Determining the number of the target stimulus takes
division of the correlation function's time shift maximum by
the time of one bit implementation and the shift between
successive stimuli.

Data analysis

We used the scipy 1.1.0 package [12] to process the results,
normalized cross-correlation to build correlation maps and
applied the Wilcoxon test (Holm-Sidak multiple comparison
correction) to pairwise comparisons.

RESULTS

Assessment of classification accuracy
and information transfer rate

In slow mode, with the m-sequence period of 2 s, the median
accuracy of command selection reached 1 (Fig. 1). In basis
and inverted m-sequence modes the accuracy was 0.96 and
0.95, respectively. In the fast mode the median accuracy was
0.33, which makes it the only mode the accuracy of which
is significantly different from that of all other modes with the
multiple comparison correction applied (o < 0.05). However,
one participant showed the accuracy of 0.96 in this mode, a
result that cannot be explained by random reasons since it was
preceded by input of 32 commands.

The command input rate is another important property of
BCI. In the modes with m-sequence period of 1 s, the median
time required to identify one command was 2 s. In the slow
mode, the figure was 3.5 s, in the fast mode — 1.2 s.

Information transfer rate is an integrative indicator of the
BCI quality: it combines both the rate and the accuracy of
command selection. We used the Shannon definition as applied
to neurocomputer interfaces [13] to calculate the indicator.
The median information transfer rate in the basis and inverted
sequence modes was 141 and 142 bpm, in the slow mode —
93 bpm, while the fast mode yielded the smallest value: 37 bpm,
which is the result of low accuracy in command selection. In the
latter mode, however, one user was able to enter commands
accurately and showed the highest transfer rate of 287 bpm, with
the command input time being 1 second and accuracy of 0.96.
The information transfer rate at the m-sequence period of 1 second
was significantly different from the slow mode (Z = 2.7; p = 0.019).

The shape of evoked potentials
and topographic distribution of evoked activity

Figure 2 shows the shape of code-modulated evoked potentials
averaged relative to the first bit of the sequence, restored for
the zero-shift m-sequence.
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Fig. 1. Neurointerface utilization by users: indicators. 1 — command input accuracy; 2 — average command input time (in seconds); 3 — information transfer rate,
bpm; A — basis stimulus sequence; B — inverted; C — slow mode; D — fast mode
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As a quantitative characteristic, we used the correlation
between the averaged evoked potential and single potentials
corresponding to single m-sequences. Figure 3 shows the
maps of maximum values of normalized cross-correlations
between averaged evoked potentials and responses to single
sequences.

According to the figure, the degree of similarity between
evoked potentials reaches its maximum in occipital channels.
All modes that allowed a high accuracy of command selection
had the highest correlation degree at the Oz site. The maximum
correlation was registered in 8 channels: P4, P6, PO3, POz,
PO4, O1, 02, Oz. The absolute values of the cross-correlation
maxima do not differ significantly between the modes when
compared in corresponding channels. In the fast mode,
localization of evoked potentials was less pronounced, which is
probably one of the reasons behind the poorest results shown
by the participants.

DISCUSSION
Research of the CVEP-enabled BCI reveals a number of

interesting patterns that play a role in the development of a
high-quality medical heurocommunicator for a wide range of
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patients. First of all, it is the ratio between rate, accuracy of
input and the overall information transfer rate peculiar to a
specific modification of the interface. Obviously, from the user's
viewpoint, the main property of a BCl is the information transfer
rate. The data obtained indicate that this type of interface is
capable of a transfer rate severalfold greater than that of the
traditional BCI making use of P300, which makes the new
interface a promising tool in the clinical practice. In the first
three modes, the information transfer rate is within the limits
usual for interfaces of this type [8, 14]. However, one participant
managed to reach the rate of 287 bpm in the fast mode, which
proved impossible for the majority of other participants. This
is an important fact; being unique for the sample, this result
substantiates the development of a BCI that would allow fine
tuning the parameters to individual characteristics of its user
with the aim to find their optimal combination (stimulation rate
in particular). Such an approach can help overcome the known
problems associated with adaptation of results of laboratory
research involving healthy participants to clinical practice [15].
Another problem it would solve is the so-called BCl-illiteracy,
i.e. inability of patients to learn to operate a brain-computer
interface [16]. There are different approaches to tackling these
problems, including modification of the training stage [17] and
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Fig. 2. Averaged evoked potentials registered during stimulation, all channels, shifted to zero shift relative to the basis m-sequence. The stimulus sequence is given in
gray. One curve — one channel of the averaged EEG. The potential averaged between all channels is given in black
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Fig. 3. Correlation function's maximum value maps, averaged for all participants, for averaged evoked potential of each channel (Fig. 2) and individual evoked potentials
for single m-sequences. This indicator allows assessing the intensity of potential in all channels

BECTHVK PIMY | 2, 2019 | VESTNIKRGMU.RU



ORIGINAL RESEARCH | NEUROPHYSIOLOGY

the individualization of interfaces. Fine tuning the m-sequence
carrier frequency and its period could help find optimal values
that maximize the information transfer rate for each specific
user. In fact, this is a routine already practiced when tuning
P300-based BCI [18]. Unfortunately, modern displays, even
those with high refresh rates, do not allow sufficient flexibility
in adjustment of the stimulus sequence period frequency
for CVEP BCI. For example, in the context of this study we
were unable to demonstrate a sequence with the period of
0.8 seconds, which suggests that designing a special device
for such purpose would be feasible. Several such attempts
have already been made (based on evoked potentials) [19], but
the specific implementations presented offer a low information
transfer rate due to the small number of stimuli.

References

1. Kaplan AY. Neurophysiological foundations and practical realizations
of the brain-machine interfaces in the technology in neurological
rehabilitation. Hum Physiol. 2016 Jan 23; 42 (1): 103-10.

2. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G,
Vaughan TM. Brain-computer interfaces for communication and
control. Clin Neurophysiol [Internet]. 2002 Jun; 113 (6): 767-91.
Available from: http://www.ncbi.nim.nih.gov/pubmed/12048038.

3. Jeunet C, Lotte F, Batail J-M, Philip P, Micoulaud Franchi J-A.
Using Recent BCI Literature to Deepen our Understanding of
Clinical Neurofeedback: A Short Review. Neuroscience [Internet].
2018 May 15 [cited 2018 Jul 24]; (378): 225-33. Available from:
https:/Amww.sciencedirect.com/science/article/pi/'S0306452218302045.

4, Akram F, Han H-S, Kim T-S. A P300-based brain computer
interface system for words typing. Comput Biol Med [Internet].
2014 Feb [cited 2014 Jun 1]; (45): 118-25. Available from: http://
www.ncbi.nim.nih.gov/pubmed/24480171.

5. Yeom SK, Fazli S, Ller KRM, Lee SW. An efficient ERP-based
brain-computer interface using random set presentation and face
familiarity. PLoS One. 2014; 9 (11): 1-13.

6. Guger C, Allison BZ, Edlinger G. Emerging BCI Opportunities from
a Market Perspective. In Springer, Dordrecht; 2014 [cited 2018 Jul
16]: 85-98. Available from: http://link.springer.com/10.1007/978-
94-017-8996-7_7.

7. McCane LM, Heckman SM, McFarland DJ, Townsend G, Mak JN,
Sellers EW, et al. P300-based brain-computer interface (BCI)
event-related potentials (ERPs): People with amyotrophic lateral
sclerosis (ALS) vs. age-matched controls. Clin Neurophysiol
[Internet]. 2015 Nov 1 [cited 2018 Jul 16]; 126 (11): 2124-31.
Available from: https://www.sciencedirect.com/science/article/
pii/'S138824571500067X.

8. Bin G, Gao X, Wang YV, Li Y, Hong B, Gao S. A high-speed BCI
based on code modulation VEP. J Neural Eng. 2011; 8 (2): 025015.

9. Kapeller C, Kamada K, Ogawa H, Prueckl R, Scharinger J, Guger C.
An electrocorticographic BCI using code-based VEP for control
in video applications: a single-subject study. Front Syst Neurosci
[Internet]. 2014 Aug 7 [cited 2018 Jul 17]; (8): 139. Available from:
http://journal.frontiersin.org/article/10.3389/fnsys.2014.00139/
abstract.

10. Spuler M, Rosenstiel W, Bogdan M. Online Adaptation of a c-VEP
Brain-Computer Interface(BCI) Based on Error-Related Potentials
and Unsupervised Learning. Baumert M, editor. PLoS One

Jlutepatypa

1. Kaplan AY. Neurophysiological foundations and practical realizations
of the brain—-machine interfaces in the technology in neurological
rehabilitation. Hum Physiol. 2016 Jan 23; 42 (1): 103-10.

2. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G,

CONCLUSIONS

The results of this study suggest that optimizing BCI operation
for a user requires fine tuning the parameters depending on the
individual characteristics of each such user. We have shown
that inverting the coding stimulus sequence does not affect the
accuracy of selection of commands by BCI users, which translates
into equal applicability of both direct and inverted stimulation
modes. At the same time, faster modes of BCI operation with
the sequences twice shorter proved to be suboptimal for the
majority of participants of the experiment. The significant individual
differences in accuracy and information transfer rate revealed by
this study suggest that it is possible to optimize BCI through its
fine-tuning to the specifics of the given patient.

[Internet]. 2012 Dec 7 [cited 2018 Jul 17]; 7 (12): €51077. Available
from: http://dx.plos.org/10.1371/journal.pone.0051077.

11. Nezamfar H, Salehi SSM, Erdogmus D. Stimuli with opponent
colors and higher bit rate enable higher accuracy for C-VEP BCI. In:
2015 IEEE Signal Processing in Medicine and Biology Symposium
(SPMB) [Internet]. IEEE; 2015 [cited 2018 Jul 17]: 1-6. Available
from: http://ieeexplore.ieee.org/document/7405476/.

12. Jones E, Oliphant T, Peterson P. {SciPy}: Open source scientific
tools for {Python}. 2001.

13. Yuan P, Gao X, Allison B, Wang Y, Bin G, Gao S. A study of the
existing problems of estimating the information transfer rate in
online brain-computer interfaces. J Neural Eng [Internet]. 2013
Apr 1 [cited 2018 Jul 16]; 10 (2): 026014. Available from: http://
stacks.iop.org/1741-2552/10/i=2/a=026014"7?key=crossref.0e89
a1992040af23792558b5b8301¢c22.

14. Wei Q, Gong H, Lu Z. Grouping modulation with different codes
for improving performance in cVEP-based brain—-computer
interfaces. Electron Lett. 2017 Jan 10; 53 (4): 214-6.

15. Kleih SC, Kaufmann T, Zickler C, Halder S, Leotta F, Cincotti F,
et al. Out of the frying pan into the fire—the P300-based BCI
faces real-world challenges. Prog Brain Res [Internet]. 2011 Jan 1
[cited 2018 Jul 16]; (194): 27-46. Available from: https://www.
sciencedirect.com/science/article/pii/B9780444538154000194.

16. Spezialetti M, Cinque L, Tavares JMRS, Placidi G. Towards EEG-
based BCI driven by emotions for addressing BCl-lliteracy: a
meta-analytic review. Behav Inf Technol [Internet]. 2018 Aug 3
[cited 2018 Jul 16]; 37 (8): 855-71. Available from: https://www.
tandfonline.com/doi/full/10.1080/0144929X.2018.1485745.

17. Jeunet C, Cellard A, Subramanian S, Hachet M, N’Kaoua B,
Lotte F. How Well Can We Learn With Standard BCI Training
Approaches? A Pilot Study. 2014 [cited 2018 Jul 16]; Available
from: https://hal.archives-ouvertes.fr/hal-01052692/.

18. Carabalona R. The Role of the Interplay between Stimulus Type
and Timing in Explaining BCl-lliteracy for Visual P300-Based
Brain-Computer Interfaces. Front Neurosci [Internet]. 2017 Jun
30 [cited 2018 Jul 16]; (11): 363. Available from: http://journal.
frontiersin.org/article/10.3389/fnins.2017.00363/full.

19. Aminaka D, Rutkowski TM. A Sixteen-Command and 40 Hz
Carrier Frequency Code-Modulated Visual Evoked Potential BCI.
In Springer, Cham; 2017 [cited 2018 Jul 16]: 97-104. Available
from: http://link.springer.com/10.1007/978-3-319-64373-1_10.

Vaughan TM. Brain-computer interfaces for communication and
control. Clin Neurophysiol [Internet]. 2002 Jun; 113 (6): 767-91.
Available from: http://www.nchbi.nim.nih.gov/pubmed/12048038.
3. Jeunet C, Lotte F, Batail J-M, Philip P, Micoulaud Franchi J-A.

BULLETIN OF RSMU | 2, 2019 | VESTNIKRGMU.RU



OPUIMHAJTbHOE NCCIELOBAHVE | HEVPO®KW3MONOIIAS

10.

11.

Using Recent BCI Literature to Deepen our Understanding of
Clinical Neurofeedback: A Short Review. Neuroscience [Internet].
2018 May 15 [cited 2018 Jul 24]; (378): 225-33. Available from:
https:/Awww.sciencedirect.com/science/article/pii/'S0306452218302045.
Akram F, Han H-S, Kim T-S. A P300-based brain computer
interface system for words typing. Comput Biol Med [Internet].
2014 Feb [cited 2014 Jun 1]; (45): 118-25. Available from: http://
www.nchi.nlm.nih.gov/pubmed/24480171.

Yeom SK, Fazli S, Ller KRM, Lee SW. An efficient ERP-based
brain-computer interface using random set presentation and face
familiarity. PLoS One. 2014; 9 (11): 1-13.

Guger C, Allison BZ, Edlinger G. Emerging BCI Opportunities from
a Market Perspective. In Springer, Dordrecht; 2014 [cited 2018 Jul
16]: 85-98. Available from: http://link.springer.com/10.1007/978-
94-017-8996-7_7.

McCane LM, Heckman SM, McFarland DJ, Townsend G, Mak JN,
Sellers EW, et al. P300-based brain-computer interface (BCI)
event-related potentials (ERPs): People with amyotrophic lateral
sclerosis (ALS) vs. age-matched controls. Clin Neurophysiol
[Internet]. 2015 Nov 1 [cited 2018 Jul 16]; 126 (11): 2124-31.
Available from: https://www.sciencedirect.com/science/article/
pii/'S138824571500067X.

Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S. A high-speed BCI
based on code modulation VEP. J Neural Eng. 2011; 8 (2): 025015.
Kapeller C, Kamada K, Ogawa H, Prueckl R, Scharinger J, Guger C.
An electrocorticographic BCI using code-based VEP for control
in video applications: a single-subject study. Front Syst Neurosci
[Internet]. 2014 Aug 7 [cited 2018 Jul 17]; (8): 139. Available from:
http://journal.frontiersin.org/article/10.3389/fnsys.2014.00139/
abstract.

Spuler M, Rosenstiel W, Bogdan M. Online Adaptation of a c-VEP
Brain-Computer Interface(BCIl) Based on Error-Related Potentials
and Unsupervised Learning. Baumert M, editor. PLoS One
[Internet]. 2012 Dec 7 [cited 2018 Jul 17]; 7 (12): €51077. Available
from: http://dx.plos.org/10.1371/journal.pone.0051077.
Nezamfar H, Salehi SSM, Erdogmus D. Stimuli with opponent
colors and higher bit rate enable higher accuracy for C-VEP BCI. In:

BECTHVK PIMY | 2, 2019 | VESTNIKRGMU.RU

12.

13.

14.

15.

16.

17.

18.

19.

2015 |IEEE Signal Processing in Medicine and Biology Symposium
(SPMB) [Internet]. IEEE; 2015 [cited 2018 Jul 17]: 1-6. Available
from: http://ieeexplore.ieee.org/document/7405476/.

Jones E, Oliphant T, Peterson P. {SciPy}: Open source scientific
tools for {Python}. 2001.

Yuan P, Gao X, Allison B, Wang Y, Bin G, Gao S. A study of the
existing problems of estimating the information transfer rate in
online brain-computer interfaces. J Neural Eng [Internet]. 2013
Apr 1 [cited 2018 Jul 16]; 10 (2): 026014. Available from: http://
stacks.iop.org/1741-2552/10/i=2/a=026014"7?key=crossref.0e89
a1992040af23792558b5b8301¢c22.

Wei Q, Gong H, Lu Z. Grouping modulation with different codes
for improving performance in cVEP-based brain—-computer
interfaces. Electron Lett. 2017 Jan 10; 53 (4): 214-6.

Kleih SC, Kaufmann T, Zickler C, Halder S, Leotta F, Cincotti F,
et al. Out of the frying pan into the fire—the P300-based BCI
faces real-world challenges. Prog Brain Res [Internet]. 2011 Jan 1
[cited 2018 Jul 16]; (194): 27-46. Available from: https://www.
sciencedirect.com/science/article/pii/B9780444538154000194.
Spezialetti M, Cinque L, Tavares JMRS, Placidi G. Towards EEG-
based BCI driven by emotions for addressing BCl-lliteracy: a
meta-analytic review. Behav Inf Technol [Internet]. 2018 Aug 3
[cited 2018 Jul 16]; 37 (8): 855-71. Available from: https://www.
tandfonline.com/doi/full/10.1080/0144929X.2018.1485745.
Jeunet C, Cellard A, Subramanian S, Hachet M, N’Kaoua B,
Lotte F. How Well Can We Learn With Standard BCI Training
Approaches? A Pilot Study. 2014 [cited 2018 Jul 16]; Available
from: https://hal.archives-ouvertes.fr/hal-01052692/.

Carabalona R. The Role of the Interplay between Stimulus Type
and Timing in Explaining BCl-lliteracy for Visual P300-Based
Brain-Computer Interfaces. Front Neurosci [Internet]. 2017 Jun
30 [cited 2018 Jul 16]; (11): 363. Available from: http://journal.
frontiersin.org/article/10.3389/fnins.2017.00363/full.

Aminaka D, Rutkowski TM. A Sixteen-Command and 40 Hz
Carrier Frequency Code-Modulated Visual Evoked Potential BCI.
In Springer, Cham; 2017 [cited 2018 Jul 16]: 97-104. Available
from: http://link.springer.com/10.1007/978-3-319-64373-1_10.




