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The last couple of years have witnessed the rapid development of prenatal molecular-based screening for fetal aneuploidies that utilizes the analysis of cell-free 

DNA circulating in the bloodstream of a pregnant woman. The present review looks at the potential and limitations of such testing and the possible causes of 

false-positive and false-negative results. The review also describes the underlying principles of data acquisition and analysis the testing involves. In addition, we 

talk about the opinions held by the expert community and some aspects of legislation on the use of noninvasive prenatal testing (NIPT) in clinical practice in the 

countries where NIPT is much more widespread than in Russia. 
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НЕИНВАЗИВНЫЙ ПРЕНАТАЛЬНЫЙ МОЛЕКУЛЯРНЫЙ СКРИНИНГ: 
ОСОБЕННОСТИ ВНЕДРЕНИЯ В КЛИНИЧЕСКУЮ ПРАКТИКУ

Развитие пренатального молекулярного скрининга анеуплоидий плода, основанного на анализе внеклеточной ДНК, циркулирующей в крови беременной, 

происходит бурно, особенно в последние 2–3 года. В обзоре представлены возможности и ограничения использования этой методики в клинической 

практике, а также причины ложноположительных и ложноотрицательных результатов скрининга. Описаны принципы, лежащие в основе технологий 

как получения, так и анализа данных. Рассмотрены мнения профессиональных сообществ, а также особенности законодательного регулирования 

применения неинвазивного пренатального скрининга (НИПС) в клинической практике в странах, где уровень использования НИПС существенно 

превышает отечественный. 
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Fetal chromosomal aneuploidy is one of the primary causes of 
spontaneous abortion, accountable for 35% of all miscarriages 
[1] and occurring in 0.3% of all births [2, 3]. The most common 
aneuploidies are trisomies 13, 18, 21 and XXY.

Trisomy 21, or Down syndrome (DS), is observed in 1 in 
800 births [4]. The risk of fetal DS increases with maternal 
age, starting to grow exponentially once a woman turns 34 
and approximating an incidence rate of 1 case per 35 births in 
women over 40 [5].

Until the 1980s, a woman’s age was the only reliable 
prognostic criterion for the risk of aneuploidy; all pregnant 
women over 35 were recommended to undergo an invasive 
diagnostic test aimed to identify the karyotype of the fetus. 
For younger women, the only indication for invasive diagnostic 
procedures was a family history [6].

Today, the 1st trimester combined ultrasound and biochemical 
screening test proposed back in 1997 [7] is considered to be 

the most reliable prognostic tool with its sensitivity of 90% for 
Down syndrome and the false positive rate of 5% [8].

At present, only invasive diagnostic techniques are 
employed to diagnose hereditary pathologies of the fetus, 
including chorionic villus and amniotic fluid sampling. The 
obtained specimens of fetal cells are analyzed by QF-PCR, 
MLPA, G-banding, FISH, and molecular karyotyping [9].

Origin of cell-free fetal DNA

Cell-free fetal DNA (cffDNA) transcends the placental barrier and 
enters the maternal bloodstream [10]. Modern technologies 
can detect cffDNA in the maternal blood plasma as early as the 
4th week of gestation. Its concentration increases throughout 
pregnancy, peaking in the last 8 weeks before delivery and then 
dropping abruptly to almost 0 in the first hours after birth [11–15]. 
Cell-free fetal DNA originates in the placental trophoblast and 
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The contribution of maternal microchimerism is normally 
negligible in comparison with the fetal DNA fraction. Cell-free 
DNA is more stable than cell-free RNA, and the methods used 
for its analysis are better reproducible. 

NIPT can be described as a statistical examination aimed 
at estimating how well each chromosome is represented in a 
studied sample. Normally, the number of short reads per each 
chromosome of a nonpregnant woman is proportional to the 
length of this chromosome. The same is true for women who 
carry a child with a normal karyotype. However, in trisomies, as 
is the case with trisomy 21, the proportion of reads needed to 
cover all copies of the chromosome of interest will be increased 
relative to other chromosomes. The length of chromosome 
21 amounts to about 1.5% of the entire genome. Given that 
the cffDNA fraction makes 10% of total cfDNA present in the 
sample, the extra chromosome 21 will cause a 0.08% rise in this 
value. To assess the reliability of NIPT results, different statistical 
methods are used, the most common being Fisher’s Z test. It is 
employed to investigate whether an increase in the read count 
per chromosome of interest is accidental. The actual coverage is 
compared to the expected precalculated value with due account 
of the standard error. Z is calculated by the formula: 

where A is the studied chromosome; x is the number of reads 
mapped to A in the analyzed sample; μ is the mean read count 
needed to cover A in the reference sample (normal control); δ 
is the standard deviation. The resulting Z score > 3 suggests 
trisomy; Z < –3 suggests monosomy, whereas a range of values 
from –3 to 3 are indicative of a normal karyotype [26].

The expected value is calculated based on the analysis of a 
cell-free DNA sample obtained from a diagnosed child.

During the analysis, maternal cfDNA is not separated 
physically from fetal DNA. This means that if a woman carries 
multiples, NIPT will be able to detect aneuploidy but will not 
point to the affected fetus. 

NIPT outcomes are largely determined by the fetal DNA 
fraction. The higher is the proportion of fetal DNA, the higher 
is the Z value yielded by the analysis in the case of aneuploidy. 
The minimum fetal fraction needed for reliable NIPT results is 
4% [27–29].

Although methods for estimating the proportion of fetal DNA 
vary, they all share the same underlying principle, searching for 
significant differences between fetal and maternal cell-free DNA
fractions. Such differences involve the presence of Y chromosome, 
which amounts to half of total cell-free DNA. This approach, 
however, can only be applied to women carrying male fetuses. 

The universal and widespread SNP-based approach to 
estimating the fetal DNA fraction exploits a simple idea: one should 
look for those polymorphic loci where the mother is homozygous 
and the baby is heterozygous (due to the presence of the paternal 
allele). The polymorphic regions should be sequenced multiple 
times, and then the number of reads covering the paternal allele 
should be counted [30–32]. The cffDNA fraction is then calculated 
by multiplying the proportion of such reads by 2. The following 
criteria are applied to SNP selection:  
• minor allele frequency (MAF) of about 50%;
• SNP should be constituents of different linkage groups;
• SNP should not be under natural selection pressure.

By expanding the panel of target SNPs, one can even 
detect aneuploidies through comparing read counts per fetal 
and maternal polymorphic loci in a chromosome of interest. 
This idea was adopted by Natera to design a noninvasive 
prenatal test based on the analysis of almost 20,000 
SNP [33].

Z = (x – μ)/δ ,

leaks into the maternal bloodstream following the apoptosis 
of trophoblast cells [16]. The placental origin of cffDNA is 
corroborated by its presence in anembryonic pregnancies in 
which no embryo is formed, but placental tissue is in place [17], 
as well as in women with meiotic placental mosaicism (PM).

PM, which is essentially a discrepancy between the 
karyotypes of a fetus and a maternal placenta, strikes 0.6–1% 
of women who previously underwent invasive diagnostic 
procedures [18]. PM can be broken down into mitotic and 
meiotic types. Mitotic PM results from the chromosomal 
nondisjunction during one of the divisions of a diploid zygote 
that gives rise to an aneuploid cell line and leads to confined 
PM. As a rule, confined PM affects only a limited region of the 
placenta and can be defined as a low-level mosaicism. Meiotic 
PM originates from an initially trisomic zygote in which a rescue 
event occurs: the loss of an extra chromosome copy in the 
early stages of fetal development. Thus, even if the placenta 
is partially or fully aneuploid, the fetus can still have a normal 
karyotype, and vice versa.

Cell-free fetal DNA characteristics

Cell-free DNA molecules circulating in the maternal blood are 
chopped fragments of 166 bp (maternal cfDNA) or 143 bp 
(fetal cfDNA) in length [19]. Such size distribution is the result 
of nonrandom DNA fragmentation [20]. DNA is degraded 
by various enzymes that cut at the sites they can access. 
Nucleosomes represent the first level of DNA compaction. They 
are histone spools with DNA wound around them, spaced 20 
base pairs apart. These linker regions can be easily accessed 
by nucleases. Therefore, we can assume that a 143 bp-long 
cffDNA fragment corresponds to a “linkerless” DNA coil wound 
around a nucleosome, whereas a 166 bp-long maternal cfDNA 
fragment corresponds to a DNA coil containing a linker region. 
The nonrandom fragmentation pattern can be explained by the 
difference in histone H1 isoforms determined by the placental 
or hematopoietic origin of nucleosomes. The main function of 
histone H1 is to bind to a linker; apparently, the binding does not
occur in the case of cffDNA, and the linker is chopped off [19, 21].

The “sawtooth”-like size distribution of shorter DNA 
fragments with a peak periodicity of ~10 bp suggests that cell-
free DNA undergoes further nuclease cleavage in apoptotic 
bodies at the position of approximately every 10th nucleotide 
directly attached to a histone protein [19, 22]. No similar size 
distribution is observed during the analysis of short reads 
mapped onto a mitochondrial genome that lacks histones.

It has been established that hypo- and hypermethylated regions 
of fetal and placental genomes do not match those of the maternal 
genome because of epigenetic difference between tissues 
[23, 24]. It is hypothesized [25] that unmethylated DNA regions are 
more accessible for cutting. Maternal cfDNA is hypermethylated, 
which means tighter DNA wrapping around histones, increased 
compaction and nucleosome stability, and longer average cfDNA 
fragment lengths in comparison with fetal DNA. 

NIPT aided by MPS

Fetal cells, fetal cell-free RNA and fetal cell-free DNA are 
potential targets for liquid biopsy. Fetal cell-free DNA has a 
number of advantages that allow it to be used as a basis for 
noninvasive prenatal testing (NIPT).

On average, the fetal fraction amounts to 10% of total 
cell-free DNA at the gestational age when prenatal testing 
is performed. This value exceeds the number of fetal cells 
circulating in the maternal blood by 3–4 orders of magnitude. 
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Fetal DNA fraction can also be reliably estimated by 
calculating the proportion of differentially methylated genome 
regions in the analyzed cell-free methylome [34].

Because the lengths of fetal and maternal DNA molecules 
are distributed nonuniformly, the fetal DNA fraction can be 
determined from the ratio of fragments sized 100–150 bp to 
those sized 163–169 bp, since they correspond to the fetal 
and maternal DNA fractions, respectively [35]. This approach is 
effective in paired-end sequencing [36].

Another novel “nucleosome track” method of quantifying 
the fetal DNA fraction is underway. The idea behind it is that 
fetal DNA fragmentation is not random and follows a certain 
pattern determined by DNA packaging into nucleosomes, as 
described above [37].

Researchers are also starting to harness neuronal networks 
to estimate the fetal DNA fraction. Using large training samples 
(thousands of specimens with a known fetal DNA fraction), 
one can get reliable results by analyzing a number of certain 
sequencing parameters [38]. 

NIPT potential

NIPT is mostly used to screen for chromosomal aneuploidies, 
but massively parallel sequencing (MPS) technologies are 
capable of detecting other genome abnormalities as well. 

Low and ultra-low (< ×1.0) coverage genome sequencing 
does not allow point mutations to be detected, but can be 
employed to screen for deletions and duplications [39]. Such 
strategy is used to perform prenatal genetic screening aided 
by high-throughput sequencing [40]. In most cases, NIPT data 
resolution is not sufficient to capture medium-sized (up to 5 billion 
bp) deletions and duplications; this problem can be solved by 
improving data yield per studied sample [41–44]. Unfortunately, 
this adds to the costs of testing. More complex bioinformatic 
methods of data processing are a bit less effective [45, 46]. The 
amount of sequencing data yielded from the sites of interest 
can be significantly increased through targeted enrichment of 
genomic DNA regions. For example, the Panorama test [47] 
targets about 20,000 polymorphic loci densely located in the 
regions prone to microdeletions. The developers believe that the 
detection accuracy of the test is 97.8% or higher [48].

Since the moment cffDNA was discovered, the world has 
seen the emergence of various approaches to the diagnosis of 
genetic abnormalities of the fetus. The very first of them were 
capable of determining the sex of the fetus [49] and its Rh factor 
[50]; they were designed to screen for the sequences that 
do not typically occur in the maternal genome and exploited 
different PCR types, including qPCR, ddPRC, and QF-PCR. 
Later, the development of methods for detecting genetic traits 
inherited from the father became a routine practice: X-STR 
markers [51], markers of autosomal dominant conditions, such 
as Huntington’s disease [52] and myotonic dystrophy [53] were 
soon discovered. However, the majority of monogenic diseases 
are autosomal-recessive and their development is driven by 
the mutations in both maternal and paternal copies of the 
genome. Because of that, prenatal screening typically includes 
3 sequencing procedures: sequencing of maternal and paternal 
genomic DNA required to identify parental haplotypes and 
locate the mutations of interest followed by cfDNA sequencing 
in order to see what chromosomes the baby has inherited [54].

The analysis of the cffDNA methylome has revealed the 
pattern of methylation that can serve as an aneuploidy marker 
[55, 56]. It has been shown that the placental methylome, which 
is what NIPT analyzes, is dynamic; the methylation pattern 
can change depending on the condition of the fetus and the 

mother. For example, the analysis of cfDNA methylation can be 
used to diagnose preeclampsia [57–59].

Although there are a few disadvantages to using cell-
free RNA as an analyte in screening tests (contamination by 
noninformative rRNA, poor preservation in the sample, low 
reproducibility of test results in comparison with cfDNA), 
changes in the expression of some RNA transcripts in the 
fetus can be a reliable predictor of preeclampsia long before a 
woman develops its symptoms [60].

NIPT validation

Like any other diagnostic technique, NIPT had to undergo 
clinical trials to prove its efficacy.

In 2014, a study conducted in 1,914 pregnant women 
from 21 US medical centers demonstrated that for NIPT the 
false-positive rate was significantly lower than for the standard 
biochemistry screening (0.3% vs. 3.6%, p < 0.001 for trisomy 
21 and 0.2% vs. 0.6%, p < 0.03 for trisomy 18). The test failed 
in 0.9% of the participants [61].

A study published in 2015 compared the efficacy of NIPT 
with that of conventional diagnostic techniques [62]. It was 
conducted in 35 medical centers using the samples collected 
from 15,841 pregnancies. NIPT was able to detect all cases 
(38) of true aneuploidy in patients with fetal trisomy 21; in 
9 patients the results were false-positive. For trisomy 21, DR 
was 100%, FPR was 0.06%, and PPV was 80.9% (the standard 
screening test used in the study returned 78.9%, 5.4%, and 
3.4% for DR, FPR and PPV, respectively). NIPT performance 
was significantly better than that of standard screening in 
pregnant women with fetal trisomies 13 and 18. This means 
that NIPT can be used for detecting fetal trisomies in the clinical 
setting because it has better resolution and higher accuracy in 
comparison with conventional diagnostic tools.

Causes of false-positive results in NIPT

NIPT has a number of limitations that can cause false-positive 
results. 

Maternal weight and gestational age

The amount of cffDNA correlates positively with the gestational 
age and is reversely proportional to the body mass index of a 
pregnant woman. Too few cffDNA fragments at 9–10 weeks 
into pregnancy do not allow NIPT results to be reliable. For 
women with high BMI, the test can turn to be ineffective as 
well, because the probability of a false-positive result remains 
high [15, 63] if cffDNA fraction is not estimated. 

Placental mosaicism

Women who tested positive for aneuploidy by NIPT are advised 
to undergo an invasive diagnostic procedure to rule out 
placental mosaicism. Here, amniocentesis should be preferred 
over chorion villus sampling because the DNA in the villi has 
the same placental origin as cffDNA [64–67]. It is absolutely not 
recommended to base the decision of pregnancy termination 
on NIPT results solely (see below).

Twins

Although NIPT can detect aneuploidies in twin pregnancies, 
it is unable to identify which of the twins has a chromosomal 
abnormality. Here, invasive diagnostic techniques should be 
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employed. Despite the fact that the total cffDNA fraction is 
higher than in singleton pregnancies [68] and it is possible to 
estimate the fetal fraction for each of the twins, the accuracy of 
NIPT is lower than in the case with singleton pregnancies [69].

A vanishing twin syndrome occurs in multiple pregnancies 
when one of the fetuses dies in the first trimester. The 
frequency of aneuploidies among vanishing twins is higher 
than in healthy twins. Because NIPT analyzes total cell-free 
DNA and in the majority of cases cannot detect the presence 
of additional haplotypes in the samples, a vanishing twin can 
contribute to false-positive test results, being an aneuploid 
fetus itself; it can also mask the aneuploidy of the second 
twin, causing false-negative results and interfering with sex 
determination. The study that analyzed data yielded by over 
30, 000 noninvasive prenatal tests demonstrates that vanishing 
twins with aneuploidies occur in 0.11% of the total sample [70]. 
This is quite close to the false-positive rate reported by an 
extensive meta-analysis of the literature on NIPT [71]. To avoid 
errors associated with vanishing twins and to timely detect the 
second fetus, ultrasound examinations performed in the 1st 
trimester should be more meticulous.

CNV in parents

It is reported that 17% of all false-positive NIPT results are 
associated with CNV 0.5 to 14 billion bp in size present in 
maternal cells [72].

Just like placental mosaicism, parental mosaicism can 
skew test results. For example, the frequency of monosomy 
X directly correlates with a woman’s age [74]; 16% of sex 
chromosome aneuploidies detected by NIPT are linked to 
the abnormalities of the maternal chromosome X [65]. The 
frequency of monosomy X varies from 1 : 3,300 (the proportion 
of mosaic cells is above 34%) [74] to 1 : 300 (the proportion 
of mosaic cells is 4% and above) [75], depending on the low 
detection threshold for mosaicism.

Tumors

NIPT results can be unreliable in pregnant women with cancer 
because cancer cells have an unstable genome, tumors usually 
produce a vast network of blood vessels and release a lot of 
cfDNA into the bloodstream [76].

Myths about the dangers of invasive diagnostic tests

Among the arguments for a more vigorous clinical promotion of 
NIPT lobbied by NIPT manufacturers is the risk of complications 
(including pregnancy loss) associated with invasive diagnostic 
tests: both amniocentesis and chorionic villus sampling are 
reported to result in pregnancy loss in 1% of cases [4, 77, 78]. 
However, other authors provide different figures on pregnancy 
loss following an invasive diagnostic porcedure: 1 : 200 for 
chorionic villus sampling and 1 : 300 for amniocentesis [79, 80]. 
These values are lower than the rate of spontaneous abortions [81].

Legislation and guidelines for NIPT

At present, there are two major models of NIPT incorporation 
into clinical practice practiced in many countries.

1. The cohort model: the test is recommended to women at 
risk based on the results of a 1st trimester screening procedure. 
In this case, the expenses are fully or partially covered by the 
federal budget. 

2. The commercial model: the test is offered to those 
pregnant women who can afford it (personal funds or health 
insurance). 

At the moment, vast TRIDENT-2 studies are being carried 
out in Holland and Denmark to investigate the aspects of NIPT 
introduction in clinical practice (http://www.meerovernipt.nl); 
the participants are offered to undergo NIPT instead of 1st 
trimester screening tests. 

Below we provide examples of how NIPT is used in different 
countries and talk about the regulatory legislation. 

United Kingdom

In the UK, 800,000 pregnancies are reported annually. In 
January 2016, the National Screening Committee operating in 
the UK [82] recommended to incorporate NIPT into the Fetal 
Anomaly Screening Program [83]. The guidelines suggest 
that NIPT should be offered to all women at a high risk for 
aneuploidy (> 1 : 150) revealed by a combined ultrasound and 
biochemistry test between weeks 10 and 14 of pregnancy. 
The efficacy report will be released in 2018–2019. If the test 
proves to be effective, the number of invasive screening 
procedures will be reduced and the saved money will be used 
to subsidize NIPT. 

Sweden

In Sweden, 120,000 pregnancies are reported annually. In 
June 2016, the Swedish Society of Obstetrics and Gynecology 
issued guidelines [84] recommending NIPT to all women whose 
risk for aneuploidies inferred from the combined ultrasound 
and biochemistry test ranges between 1 : 51 and 1 : 1,000 
and to those who cannot undergo an invasive diagnostic 
procedure because of HIV or hepatitis. Caution should be 
exercised when ordering NIPT for a woman carrying multiples. 
A high risk for aneuploidy means that invasive diagnostic tests 
should be performed, whereas for women at low risk standard 
checkup examinations would be enough. The Society does not 
recommend NIPT to every pregnant woman because there is 
no sufficient evidence of the test’s efficacy in every cohort of 
pregnant patients and because of its high costs. 

France

In France, the number of annual pregnancies reaches 800,000. 
The French Ministry of Health issued its guidelines for prenatal 
testing in 2017 [85]. Before the advent of NIPT, screening 

Table. Leading US manufacturers of commercial NIPT

NIPR trade name Manufacturer Location

MaterniT21Plus™ Sequenom, subsidiary of LabCorp, Inc. San Diego, CA

Verifi™ Verinata Health, now Illumina Redwood City, CA

Harmony™ Ariosa Diagnostics San Jose, CA

Panorama™ Natera San Carlos, CA
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for aneuploidies relied on FMF standards [29]. If the risk for 
aneuploidy was high (> 1 : 250), invasive diagnostic testing was 
carried out followed by karyotyping. The expenses were covered 
by health insurance. According to the recommendations 
published in 2017, the analysis of circulating cell-free DNA is 
recommended to women at high risk (from 1 : 1,000 to 1 : 51)
for fetal trisomy 21 revealed by 1st trimester ultrasound and 
biochemistry screening. Pregnant women whose risk for 
aneuploidy is 1 : 50 or higher should undergo an invasive 
diagnostic procedure but still can opt for molecular screening 
first. It is emphasized that NIPT should not be regarded as a 
substitute for invasive diagnostic testing. The guidelines outline 
the need for developing a quality control and lab accreditation 
system. The screening strategy is to be revised in 3 years; 
among other things, the revision will cover the issues of 
screening for other aneuploidies and microdeletions. 

USA

About 6.35 million pregnancies are reported annually in the 
USA. The NIPT market is divided between a few major players 
(see the Table) [86].

NIPT expenses are covered by health insurance or a 
patient’s personal funds.  No funding is received from the state.

So far, 4 medical associations have proposed guidelines 
for NIPT:

• the American College of Obstetricians and Gynecologists 
(ACOG), May 2016 [87];

• the International Society for Prenatal Diagnosis, April 2015 [80];
• the National society of Genetic Counselors, October 2016 [88];
• the American College of Medical Genetics and Genomics 

(ACMG) [89].
The ACMG notes that the evolution of NIPT methods 

and techniques is so rapid that any currently existing clinical 
recommendations will become obsolete in just a couple of 
years. Similar to ACOG, the ACMG guidelines emphasize that 
all pregnant women should be informed about the possibility of 
undergoing NIPT and its relative advantages over conventional 
screening for trisomies 13, 18 and 21. Some experts and 
manufacturers consider these guidelines as a signal for 
ordering NIPT for all pregnant women regardless of the results 
of 1st trimester screening. This interpretation is wrong. ACMG 
only recommends that pregnant women should be informed of 
the possibility of undergoing NIPT and provided with all relevant 
information about the test [86]. Unfortunately, many physicians 
are unaware of NIPT limitations, tend to misinterpret its results 
or take wrong decisions. Knowing that, NIPT manufacturers 
provide their own genetic counseling, which raises a number of 
questions since the counsellors involved can be biased.

Recently, there has been a rise in the number of patients 
who test false-positive for sex chromosome aneuploidies. It 
is imperative that patients should be informed of the situation 
and explained that clinical outcomes for children with such 
aneuploidies vary. For example, although the X0 karyotype is a 
common cause of pregnancy loss, the quality of life of women 
with Turner syndrome is relatively high.

The guidelines stress that NIPT results should provide 
accurate information about NIPT specificity, sensitivity, PPV, 
NPV, and fetal DNA fraction for all types of analyzed mutations 
(aneuploidies of autosomes, sex chromosomes, CNV). 

The most common cause of NIPT failure is low fetal DNA 
fraction. The low fDNA fraction correlates with a number of 
fetal aneuploidies [62, 72], meaning that in the case of NIPT 
failure, the patient should be immediately offered to undergo 
an invasive diagnostic test instead of repeating NIPT. ACMG 
does not recommend to use NIPT for detecting microdeletions 
because no reliable assessment of its specificity and sensitivity 
has been made so far. 

Russia

In Russia, the number of annually reported pregnancies is 
about 1.8 million. Screening for genetic pathology of the fetus 
includes biochemistry tests and ultrasound examinations 
conducted in the 1st trimester. If the revealed risk is 1 : 100, 
the woman is offered to consult a geneticist and undergo an 
invasive diagnostic test. All expenses are covered by health 
insurance and regional budgets [90]. Clinical recommendations 
on NIPT were published in 2016 [91]; they are largely consistent 
with the ACMG guidelines mentioned above.

A few obstacles impede NIPT promotion on the Russian 
market: NIPT is not certified in Russia and almost all MPS 
reagents and equipment have no marketing authorization in 
our country.

CONCLUSION

Incorporation of NIPT into clinical practice poses a serious 
dilemma. If we raise the risk threshold signaling the need for 
NIPT to a higher value, the doctors who perform invasive 
testing may lose their skills due to the lack of clients, which 
will lead to diagnostic inaccuracy. In this case, the detection 
rate may even become lower than it is now. If we start to offer 
NIPT to every pregnant woman, the total expenses will soar 
and become unacceptable even for the most affluent and 
developed countries. This means that the optimum risk value 
should be defined at which the balance between the aneuploidy 
detection rate and the incurred costs will be harmonious.
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