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AUTONOMOUS BIOLUMINESCENT SYSTEMS: PROSPECTS FOR USE 
IN THE IMAGING OF LIVING ORGANISMS

Bioluminescent systems are increasingly being used for the development of highly sensitive optical imaging techniques in vivo. However, it is necessary to inject 

expensive and unstable synthetic substrates (luciferins) before each analysis for most of the systems applied. Autonomous bacterial and fungal bioluminescent 

systems, that recently have become available for implementation in eukaryotic cells, in our opinion, may be developed into an effective tool in new technologies 

of bioluminescent imaging.
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АВТОНОМНЫЕ БИОЛЮМИНЕСЦЕНТНЫЕ СИСТЕМЫ: ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ 
В ИМИДЖИНГЕ ЖИВЫХ ОРГАНИЗМОВ 

Биолюминесцентные системы все чаще применяют для разработки высокочувствительных оптических методов имиджинга in vivo. Однако при 

использовании популярных систем необходимо инъекционно вводить дорогие и малостабильные синтетические субстраты (люциферины) перед 

каждым анализом. Автономные системы бактерий и грибов, которые недавно стали доступны для работы с эукариотическими клетками, по нашему 

мнению, могут развиться в полноценный инструмент для создания новых технологий биолюминесцентного имиджинга.
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The use of in vivo optical imaging as a visualization method is 
growing in modern biomedical research [1, 2]. A non-invasive 
investigation of animal objects takes place during bioimaging, 
in which light is emitted as a result of the oxidation of a 
luciferin molecule (a chemical reaction catalyzed by the protein 
luciferase), or in response to the excitation of a fluorescent 
protein by light from an external source. To date the most 
popular optical reporter proteins are fluorescent (GFP and its 
homologs of different colors) as well as bioluminescent proteins 
from insects (FLuc) and marine organisms (RLuc, GLuc). The 
scope of bioluminescent and fluorescent imaging in medicine 
based on these proteins is very wide and includes (but is 
not limited to) the study of gene functions, protein-protein 
interactions, pathological processes and oncogenesis, drug 
development, etc. both in cells and tissues, as well as in lab 
animals real-time assays [3].

A huge variety of fluorescent proteins with different spectral 
properties available and a large functional toolset based on 
them (photoactivated, photoswitchable proteins and sensors) 

are the indisputable benefits of the existing fluorescence 
imaging technologies [4]. However, the use of fluorescent 
proteins requires the external source of light, resulting in 
the sharp decrease of sensitivity due to autofluorescence, 
phototoxicity and background noise. High-resolution imaging in 
vivo is usually accompanied by a complex invasive procedure 
[5]. Bioluminescent systems are free from such flaws and 
therefore successfully compete with fluorescent proteins. The 
resolution up to a single cell inside a living organism recently 
became available for bioluminescent imaging. Meanwhile, 
possible toxicity, low stability and high cost of synthetic 
luciferins (bioluminescent substrates), which have to be injected 
into the studied organism prior to every analysis, complicate 
bioluminescent imaging procedures.

The use of autonomously luminescent systems, for which 
the biosynthesis of luciferin can be reproduced by genetic 
engineering in the cells of the studied organism, can become 
an effective alternative to the existing in vivo bioimaging 
technologies. Unfortunately, among thousands (~103) of 
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Fig. 1. Biochemical cycles of autonomous bioluminescence in bacteria (A) and fungi (B)
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glowing species and around 40 (~102) different bioluminescence 
mechanisms, only 10 luciferins’ (glowing substrates) structures 
and 7 luciferases’ gene families (~101) [6, 7] are discovered 
to date, and the complete pathway of luciferin biosynthesis is 
determined only for bacterial [3] and, more recently, for fungal 
[8] bioluminescent systems. There is some evidence that firefly 
D-luciferin in insects is synthesized from p-benzoquinone and 
L-cysteine [9], but proteins responsible for these processes 
have not yet been isolated. LRE protein, regenerating D-luciferin 
from oxyluciferin [10, 11], cannot become an only substitute for 
the complete biosynthesis pathway of a luminescent substrate 
from common metabolites. Thus only two luminescent systems 
are real candidates for the development of new autonomous 
imaging technologies for now.

Bacterial bioluminescence: 
from prokaryotes to eukaryotes

Luminescent bacteria are the most widespread glowing 
organisms, being represented by both marine and terrestrial 
species. Bacterial bioluminescence is well studied: the cassette 
of five genes luxCDABE is responsible for the generation of light. 
LuxAB gene encodes a heterodimeric bacterial luciferase, luxC, 
luxD and luxE encode three proteins (reductase, transferase 
and synthase) which perform biosynthesis of the substrate 
(dodecanal) for bioluminescence reaction (Fig. 1A). Also, the frp 
gene encoding flavin reductase, responsible for the synthesis 
of flavin mononucleotide FMNH

2
, an essential component for 

the luminescence reaction, can also be included in the cassette 
[12]. Thus, bacterial bioluminescence could be completely 
transferred to a new organism and make it glow without the 
addition of luciferin from the outside. The dependence on the 
presence of FMNH

2
 and fatty aldehydes, low brightness and, 

most importantly, the blue color of luminescence (490 nm), 
which is inconvenient for in vivo deep tissue imaging, are the 
main disadvantages of this system.

Heterologous gene expression of an autonomous bacterial 
luminescent system was quickly and successfully implemented 
in prokaryotic cells [13], however, the large size of the operon, 
its multigenic organization and the toxicity of the system to the 
host organism (due to the cytotoxicity of dodecanal) became 
a fundamental difficulty for its transfer to eukaryotic cells. To 
solve this problem a large-scale structural rearrangement of the 
operon was necessary. 

The first success in transferring autonomous bacterial 
luminescence to eukaryotes came with the transgenic luminous 
yeast Saccharomyces cerevisiae [14]. Efficient expression 
of genes was achieved by codon optimization and addition 
of linker regions. The choice of a thermostable luciferase of 
terrestrial species Photorhabdus luminescens, which remains 
active at 37 °C, instead of a marine one from Vibrio harveyi, was 
also important. Nevertheless, the glow was dim and unstable. 
The first successful adaptation and optimization of genes luxAB 
of bacterial luciferase for HEK293 cells was made after 2 years 
[15]. And finally, the first application of autonomous bacterial 
luminescence in mammalian cells for in vivo bioimaging with a 
sensitivity of about 20,000 cells was described in 2010 [16]. In 
parallel, first autonomously luminescent plants were obtained [17].

However, despite all the work done to further optimize and 
reduce the operon for its application in mammalian cells (for 
example, [18]), there is a limited number of examples of the use 
of bacterial bioluminescence for eukaryotic bioimaging [19–21] 
due to its low brightness in comparison with non-autonomous 
systems, for example, D-luciferin-dependent. Recently, after 
additional changes in the operon and the use of individual 
plasmids for optimized gene expression a new bacterial system 
“co Lux” was developed with the brightness sufficient for single-
cell imaging of HEK293 cells and comparable to that of FLuc 
luciferase [22, 23]. Low concentration of long chain aldehyde 
does not lead to adverse toxic effects. The only noticeable 
effect was a decrease in NADPH concentration in luminous cells 
(due to its increased consumption during the bioluminescence 
reaction). The first example of autonomous bioimaging based 
on a fuse between LuxAB and yellow fluorescent protein YPET 
was also described [24].

Autonomous luminescence from fungi: 
an alternative to bacteria

The study of luminous fungi has a long history. For the first 
time, the structure of fungal luciferin (3-hydroxyhispidin) was 
established in 2015 [25]. In 2018 fungal luciferase and the 
complete cycle of luciferin biosynthesis from a widespread 
secondary plant metabolite caffeic acid were described, 
followed by the application of this system to developing 
autonomously luminescent yeast [8] (Fig. 1B).

The luminescence of fungi is based on the genes hisps, h3h, 
luz (luciferase) and cph. Hisps and h3h encode the proteins that 
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References

sequentially assemble hispidin from "caffeic acid" and luciferin 
(3-hydroxyhyspidin), respectively. Luz encodes luciferase, and 
cph is responsible for the protein which converts the product 
of luciferin oxidation (oxyluciferin) back into caffeic acid. It was 
shown recently that the expression of only three genes hisps, 
h3h and luz in Nicotiana tabacum plants is sufficient for the creation 
of  bright, autonomously luminescent plants [26, 27]. Unlike the 
bacterial luminescent system, thorough codon optimization is not 
necessary to obtain transgenic plants, since the genetic material is 
originally taken from eukaryotes and the new biosynthetic cycle fits 
into the metabolism of the host organism.

The first example of autonomously glowing mammalian 
HEK293T cells based on fungal bioluminescence genes 
required the use of a mixture of eight plasmids [26]. The 
resulting low brightness and instability of the glow indicates the 
necessity to further optimize the genetic constructs to achieve 
maximum light emission. The total length of the currently used 

coding sequences of the bacterial bioluminescence system is 
6.2 thousand base pairs (kb), whereas for the fungal system 
this value is about 12.8 kb, but it can be reduced to 9.6 kb 
in case of utilization of alternative enzymes. Meanwhile, a 
significant advantage of autonomous fungal bioluminescence 
is the maximum of luminescence at 540 nm (yellow), which 
makes this system more promising for in vivo bioimaging.

CONCLUSION

The number of instruments for optical imaging in medical 
research is constantly increasing. In our opinion, more sensitive 
in vivo bioluminescent imaging in the future may compete with 
established fluorescence technologies. Actively studied at the 
moment, autonomous genetically encoded bioluminescent 
systems based on bacterial or fungal gene cassettes are able 
to be on a par with existing imaging methods.
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