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A MUTANT OF THE PHOTOTOXIC PROTEIN KILLERRED THAT DOES NOT FORM DSRED-LIKE CHROMOPHORE
Gorbachev DA, Sarkisyan KS =
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia

Genetically encodable photosensitizers based on fluorescent proteins produce reactive oxygen species when illuminated with light. Although widely used as
optogenetic tools, existing photosensitizers with green fluorescence possess suboptimal properties motivating for a search of new protein variants with efficient
chromophore maturation and high phototoxicity. Here we report a mutant of the phototoxic fluorescent protein KillerRed protein with fluorescence in the green
part of the spectrum. The mutant variant carries mutations 164L, D114G, and T115S and does not form a DsRed-like chromophore. The protein can be used as a
template to create new genetically encodable photosensitizers that are spectrally different from KillerRed.
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MYTAHT ®OTOTOKCUYHOI'O BEJIKA KILLERRED, HE CDOPMI/IPYI'OLIJ,I/IVI DSRED-INMOAOBHOINO0 XPOMO®OPA
0. A. Topbaves, K. C. CapkumcsH B3

VHCTUTYT BroopraHmnyieckor xummm nvern M. M. LLiemsikuHa u FO. A. OBunHHMKOBa, Mockea, Poccust

TeHeTn4ecKn Kopmpyemble (hOTOCEHCUBUIM3ATOPbI Ha OCHOBE (hTyOPECLIEHTHBIX BENKOB CMIOCOGHBI MPOV3BOANTL aKTVBHbIE (DOPMbI KUCNIOPOAa Mpu 0ByHeHM
CBETOM, ¥ MOTOMY UX LUMPOKO MCMOMb3YIOT B KAYECTBE OMTOrEHETUYECKMX MHCTPYMEHTOB. PagdpaboTaHHble Ha CeroaHsiLLHNA AeHb (hOTOCEHCMONIM3aTOPbI C
3eneHoin dnyopecLeHUmein obnagatoT HeonTMabHbIMIU cBocTBaMN. Llenbio HacToswen paboTbl Gbin MOUCK HOBbIX BapuaHTOB (hilyOpPECLEHTHbIX 6ENKoB ¢
3(hHEKTMBHBIM CO3pEBaHMEM XPOMOdOpa U BbICOKOM (POTOTOKCUHYHOCTHIO. C MOMOLLBIO Cly4aiiHOro MytareHe3a (hOTOTOKCUYHOMO (hlyopecLieHTHOro benka
KillerRed n HanpasneHHon aBontoummn B E. coli nonydeH 6enok ¢ XpoMOOpOM Ha OCHOBE TMPO3MHA, (DNyopeCcUMPYIOLLIIA B 3eneHOo obnact cnektpa. HoBbln
6enok, Hecywmin mytaumm 164L, D114G n T115S, He dopmmpyeT DsRed-nogobHoro xpomModopa U MOXeT BbiTb MCMob3oBaH Kak 6a30Bbii reHOTUN OJ1st
paspaboTKM HOBbIX CrieKTpasibHO OTAMYHbIX OT KillerRed reHeTnyecku koampyembix (hOTOCEHCMBUNIN3aTOPOB.
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Fluorescent proteins are widely used as genetically encodable
tags for optical labeling of living systems [1]. Their chromophores
are located inside the protein structure and are protected from the
surrounding solvent; therefore, most of the existing fluorescent
proteins are passive reporter molecules: irradiation with light
does not significantly affect cells expressing these markers.

At the same time, a unique family of genetically encoded
photosensitizers has been developed based on the fluorescent
protein anm2CP. Upon light illumination, members of the family
produce reactive oxygen species that can damage the cell [2].
Structural studies of these proteins have identified a water-filled
channel that connects the chromophore to the solvent. This
structural feature of phototoxic fluorescent proteins is thought
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to be responsible for the efficient diffusion of reactive oxygen
species into the environment [3, 4].

KillerRed was the first protein engineered to produce
reactive oxygen species demonstrating phototoxicity levels
exceeding other fluorescent proteins more than thousand-fold
[2]. Depending on the cellular localization and the excitation
light dose, reactive oxygen species generated by KillerRed
can lead to various physiological consequences — from
inactivation of fusion proteins [2], to cell division arrest [5, 6]
or cellular death through necrosis or apoptosis [2, 7]. Due to
these capabilities, KillerRed is used as an optogenetic tool in
cell biology to inactivate proteins with light, to study intracellular
oxidative stress or to ablate specific cell populations. KillerRed
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has also been used as a photosensitizer for treatment of tumors
in model systems [7-9].

Other genetically encoded photosensitizers have been
created based on KillerRed, including SuperNova, a monomeric
KillerRed variant with similar spectral characteristics [10], as
well as orange fluorescent protein KillerOrange [11] and green
fluorescent protein SuperNova Green [12]. Besides that, non-
fluorescent protein-based photosensitizers miniSOG, Pp2FbFP
and others that generate singlet oxygen have been developed
(183, 14].

None of the existing photosensitizers with green fluorescence
can be universally used in relevant applications. Some proteins
demonstrate incomplete or slow chromophore maturation rate;
others may not generate the type of reactive oxygen species
suitable for a particular application, or their phototoxicity may
depend on the availability of external chromophore [15]. In this
work, we aimed to find a mutant version of KillerRed that did
not form a DsRed-like “red” chromophore and, therefore, could
serve as a basis for the development of the new generation of
efficient photosensitizers with green fluorescence.

METHODS
DNA amplification and analysis of amplification products

DNA amplification was performed using the Encyclo PCR Kit
(Evrogen; Russia) on a PTC-200 Thermal Cycler (MJ Research;
USA). The analysis of amplification products was carried
out in 1-2% agarose gel. Ethidium bromide was used at a
concentration of 0.5 pg/ml.

Generation of the mutant library for directed evolution

Mutagenesis was performed by error-prone PCR. We added
manganese ions and a skewed ratio of nuclectide triphosphates
(50x mix: 0.2 MM dGTP, 0.2 MM dATP, 1 MM dCTPR, 1 MM dTTP)
into the PCR reaction mixture leading errors in Tag-polymerase-
based DNA amplification. The average mutation rate was 8
nucleotide substitutions per 1000 amplified nucleotides after
25 cycles of PCR.

For electroporation, the ligation mixture was purified on
Cleanup Mini DNA purification columns (Evrogen; Russia).
40 pl of electrocompetent cells were thawed on ice, and up
to 5 pl of purified ligation mixture was added to thawed cells.
Cells were then transferred into a pre-cooled electroporation
cuvette (Bio-Rad; USA) and electroporated on the MicroPulser
device (Bio-Rad; USA). Immediately after electroporation, 3 ml
of SOB medium was added to the cuvette, and the bacterial
suspension was transferred into 1.5 ml plastic tubes. The
tubes were incubated for one hour in an incubator at 37 °C
and then plated on LB agar. The plates were incubated at
37 °C for 18 hours. The average density of E. coli colonies was
5,000 per plate and the total diversity of genotypes in the library
was estimated to be around 100,000 clones. The number of
fluorescent colonies was 22%.

Expression and purification of recombinant proteins

E. coli XL1 Blue was grown in 800 ml flasks in LB medium
with ampicillin (100 mg/ml), induced with isopropyl-B-D-1-
thiogalactopyranoside to the final concentration 0.5 mM and
incubated for 3 hours. All further operations were performed
on ice. The culture was centrifuged, the supernatant was
discarded, the pellet was resuspended in 4 ml of phosphate
buffer (pH 7.4), the suspension was lysed in Sonics Vibra Cell
sonicator (Sonics & Materials; USA) and centrifuged again.
The supernatant was transferred into a new tube with 400 pl
of Talon metal-affinity resin (Clontech; USA), equilibrated with
phosphate buffer. The tube was placed in a shaker for one
hour at 200 rpm at room temperature. Then, the resin with the
protein was washed several times with phosphate buffer and
eluted with phosphate buffer containing imidazole (250 mM).

RESULTS

We relied on random mutagenesis to find KillerRed mutant with
green fluorescence. The mutant library was cloned into pQE-30
vector, transformed into E. coli cells and grown on agar plates
without induction. We visually screened bacterial colonies
exposed by 400 nm and 480 nm light to identify mutants with
significant green fluorescence and identified the KillerRed 164L/
D114G/T1156S mutant (see Table, the numbering of positions
in the protein is indicated according to the established notation
so that the chromophore-forming residues are in positions
65-67 [1]). This mutant had very dim fluorescence in the red
part of the spectrum while being noticeably fluorescent in green
under when illuminated with 480 nm light. Observed spectral
properties indicated that the protein formed the “classical”
GFP-like chromophore instead of the DsRed-like chromophore
found in the parental KillerRed.

Since proteins with GFP-like chromophores and DsRed-
like chromophores have specific absorption spectra that are
easily distinguishable from each other, we isolated and purified
KillerRed protein and it's mutant KillerRed 164L/D114G/T115S
(Fig. 1). The absorption spectrum of purified KillerRed 164L
D114G T115S was significantly different from the absorption
spectrum of KillerRed and had a pick with the maximum at
514 nm and a blue-shifted shoulder characteristic of GFP-like
chromophores.

DISCUSSION

The lack of absorbance at 550-600 nm in KillerRed 164L/
D114G/T115S indicated that introduced mutations almost
entirely prevented formation of DsRed-like chromophore. The
peak with a maximum at 514 nm and a characteristic shoulder
at 480-485 nm suggested that chromophore catalysis stopped
at a “classical” GFP-like chromophore [1].

Mutations found in the KillerRed variant we identified are
interesting in the context of existing literature on fluorescent
proteins mutagenesis. In particular, mutations at position 64

Table. Amino acid sequences of proteins described in this study. Chromophore-forming residues are highlighted in purple, positions containing mutations are highlighted

in orange

Amino acid sequence of KillerRed 164L D114G T115S
(identified in this study)

MRGSHHHHHHGSEGGPALFQSDMTFKIFIDGEVNGQKFTIVADGSSKFPHGDFNVHAVCETGK
LPMSWKPICHLLQYGEPFFARYPDGISHFAQECFPEGLSIDRTVRFENDGTMTSHHTYELDGSC
VVSRITVNCDGFQPDGPIMRDQLVDILPNETHMFPHGPNAVRQLAFIGFTTADGGLMMGHFDS
KMTFNGSRAIEIPGPHFVTITKQMRDTSDKRDHVCQREVAYAHSVPRITSAIGSDED

Amino acid sequence of KillerRed

MRGSHHHHHHGSEGGPALFQSDMTFKIFIDGEVNGQKFTIVADGSSKFPHGDFNVHAVCETGK
LPMSWKPICHLIQYGEPFFARYPDGISHFAQECFPEGLSIDRTVRFENDGTMTSHHTYELDDTCV
VSRITVNCDGFQPDGPIMRDQLVDILPNETHMFPHGPNAVRQLAFIGFTTADGGLMMGHFDSK
MTFNGSRAIEIPGPHFVTIITKQMRDTSDKRDHVCQREVAYAHSVPRITSAIGSDED
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Fig. 1. Absorption spectra of purified proteins KillerRed and KillerRed 164L/D114G/T115S

Chromophore

D114G/T115S

Fig. 2. Location of the chromophore and mutations 164L, D114G and T1158S in the structure of KillerRed.

were previously described as affecting chromophore maturation:
for instance, in Aequorea victoria GFP, the F64L mutation
improves maturation of the chromophore when expressed at
37 °C [1], while in the chromoprotein from Acropora millepora the
S64C mutation changes the color of the protein [16]. Mutations
D114G and T115S are located in the neighboring positions on
the loop connecting the beta-strands 5 and 6 (Fig. 2) and may
contribute to the adaptation of the beta-barrel to the replacement
of isoleucine with leucine at position 64.
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