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EFFICACY OF COMMERCIAL BACTERIOPHAGE PRODUCTS AGAINST ESKAPE PATHOGENS

Kuptsov NS &=, Kornienko MA, Gorodnichev RB, Danilov DI, Malakhova MV, Parfenova TV, Makarenko Gl, Shitikov EA, llina EN

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
The ever-rising prevalence of multidrug-resistant bacteria necessitates the search for a therapeutic alternative to antibiotics. Using therapeutic products
based on virulent bacteriophages might provide such an alternative. The aim of our study was to evaluate the efficacy of commercial phage products and
natural bacteriophage monoisolates recovered from environmental sources against clinical strains of Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, and Pseudomonas aeruginosa. We compiled a collection of 147 strains that were subsequently genotypes using the MLST method. The
efficacy of bacteriophages was evaluated in spot tests. The highest efficacy was demonstrated by "Staphylococcal bacteriophage" (86%, effective against
S. aureus), "Purified polyvalent pyobacteriophage" (87.8%, effective against K. pneumoniae), and a group of phage products against P. aeruginosa, including
"Pseudomonas aeruginosa bacteriophage" (87.5%), "Complex pyobacteriophage" (79.5-90%) and "Purified polyvalent pyobacteriophage" (90-92.5%). The
efficacy of "Intesti bacteriophage", which targets E. faecium, was 4.2%. The efficacy of commercial phage products against S. aureus and K. pneumoniae was
higher than the efficacy of individual phage monoisolates (60% for the S. aureus phage vB_SauP-436-3w and 5.9% for the K. pneumoniae phage vB_Kp_M_
Seu621). Thus, all tested commercial phage products were highly effective against P aeruginosa, K. pneumoniae and S. aureus. There are no commercial
phage products on the market against other ESKAPE pathogens, including Acinetobacter baumannii and Enterobacter cloacae. Besides, there are no effective
phage products against E. faecium. This dictates the need for new effective bacteriophages against these species.
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Every year, multidrug resistant (MDR) bacteria are becoming
more prevalent. MDR strains are defined as having resistance
to three or more antibacterial drugs [1]. Bacterial infections
caused by MDR strains pose a critical threat to global
healthcare. Most MDR strains are found among the so called
ESKAPE pathogens (an acronym for Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacter spp.).
These bacteria cause life-threatening nosocomial infections
and are especially dangerous for individuals with compromised
immunity and chronic conditions [2—4].

According to the World Health Organization, pathogenic
bacteria can be classified in terms of threat prioritization as
having critical, high or medium priority [1]. Carbapenem-
resistant A. baumannii, P. aeruginosa, Enterobacteriaceae
spp., as well as K. pneumoniae, are critical priority pathogens.
In some countries, the proportion of carbapenem-resistant
isolates among P. aeruginosa and K. pneumoniae can be
as high as 50 and 64%, respectively [5]. Methicillin-resistant
S. aureus (MRSA) and vancomycin-resistant E. faecium belong
to the high-priority group. In some countries, MRSA strains
amount to 43% of all S. aureus isolates, whereas vancomycin-
resistant E. faecium makes up 59.1% [5]. The number of
antibiotic-resistant isolates is constantly increasing.

Infections caused by drug-resistant ESKAPE pathogens
dictate the need for novel therapeutic approaches. One of
them involves using virulent bacteriophages as a complement
or an alternative to antibacterial therapy. The first attempts to
exploit bacteriophages in clinical practice were made in the
early 20" century. So far, phages have proved to be effective
antibacterial agents [6, 7]. Using virulent bacteriophages as
therapeutic agents has several advantages. Most importantly,
their interaction with a bacterial cell does not depend on the
resistance profile of the latter. Phages co-evolve with their
bacterial hosts and thereby learn to overcome the host’s
defenses.

Phage products available on Russia’s pharmaceutical
market are cocktails composed of several virulent phages.
Such cocktails allow targeting an array of different bacterial
strains. In Russia, most commercial phage products are
manufactured by two companies: Microgen Scientific and
Production Association and Micromir Research and Production
Center. The manufacturers claim that their phage cocktails are
effective against ESKAPE pathogens, including E. faecium,
S. aureus, K. pneumoniae, and P, aeruginosa. At present, there
are no commercial phage preparations on the Russian market
exerting activity against A. baumannii and Enterobacter spp.
This emphasizes the importance of their development.

The aim of this work was to evaluate the efficacy of commercial
phage cocktails and monoisolates of bacteriophages from
environmental sources against clinical strains of E. faecium,
S. aureus, K. pneumoniae, and R aeruginosa.

METHODS
Bacterial isolates

Isolates of E. faecium, S. aureus, K. pneumoniae, and
P, aeruginosa (n = 147) were obtained from the inpatients of
the Federal Research and Clinical Center of Physical-Chemical
Medicine of the Federal Medical Biological Agency in 2018-
2019. The cultures were grown on Columbia agar or soya broth
(both by Oxoid; UK) at 37 °C for 18-24 h.

Bacterial species were identified by means of direct mass
spectrometry profiing of bacterial lysates as described in
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[8]. A saturated solution of a-cyano-4-hydroxycinnamicacid
(Bruker Daltonics; Germany) in 50% acetonitrile and 2.5%
trifluoroacetic acid was used as a matrix solution. Mass spectra
were recorded on a Microflex MALDI TOF mass spectrometer
(Bruker Daltonics; Germany). A bacterial test standard (Bruker
Daltonics; Germany) was used for calibration. Mass spectra
were recorded, processed and analyzed in flexControl 3.0
and flexAnalysis 3.0 (Bruker Daltonics; Germany). Species
identification was aided by MALDI Biotyper 3.0 (Bruker
Daltonics; Germany).

Determining bacterial sensitivity to antibiotics

Sensitivity of bacterial strains to antibiotics was evaluated by disk
diffusion as recommended by the international Performance
Standards for Antimicrobial Susceptibility Testing (Clinical
and Laboratory Standards Institute) (CLSI) published in 2019
[9]. Gram-negative K. pneumoniae and P aeruginosa were
tested for sensitivity to ceftriaxone, gentamicin, ciprofloxacin,
and meropenem. Gram-positive S. aureus and E. faecium
were tested for sensitivity to erythromycin, ciprofloxacin and
tetracycline. Additionally, S. aureus isolates were tested for
resistance to oxacillin and gentamicin. Sensitivity of E. faecium
to vancomycin was evaluated using a method of serial dilutions
following CLSI recommendations [9].

Molecular genetic testing of bacterial strains

K. pneumoniae, P. aeruginosa and E. faecium strains were
genotyped using multilocus sequence typing (MLST) following
standard schemes [10-14]. For S. aureus, spa-typing was
applied according to the standard protocol; this technique
allows determining the sequence of the Staphylococcus
protein A gene [15].

Bacterial DNA was isolated using a DNA-express kit
(Lytech; Russia) following the manufacturer’s protocol. DNA
samples were stored at —20 °C. Genes targeted by genetic
typing were amplified in a TETRAD DNA ENGINE thermocycler
(MJ Research; USA). Amplification was carried out in 25 pl of
the reaction mix containing 66 mM Tris-HCI (pH 9), 16.6 mM
(NH,),SO,, 2.5 mM MgCl,, 250 uM of each dNTP, 1 Tag DNA
polymerase unit (Lytech; Russia), and 10 pmol of primers.
Amplification products were separated in 2% agarose gel
stained with ethidium bromide for DNA visualization.

Sanger sequencing was performed in a 3730 DNA Analyzer
(Thermo Fisher Scientific; UK). Gene sequences were analyzed in
the Ridom StaphType TM software (Ridom GmbH; Wurzburg,
Germany) and Vector NTI Suite 9 (Thermo Fisher Scientific; UK).
Allelic profiles and MLST types were determined by comparing
the obtained nucleotide sequences to the sequences stored in
the international PUbMLST database [11].

Commercial phage products

In this study, we evaluated the efficacy of 14 commercial
products of virulent bacteriophages manufactured by Microgen
(Table 1). All phage products were bought at Moscow
pharmacies and are approved for clinical use.

Isolation of bacteriophages from environmental sources

Bacteriophages capable of infecting some K. pneumoniae and
S. aureus strains were isolated from water samples collected
in different water reservoirs; isolation was performed using the
enrichment culture method. Briefly, a 50 ml water sample was
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Table 1. Commercial bacteriophage products used in the study

Name Activity spectrum Batch Manufactured in
number
N33 Nizhny Novgorod
"Staphylococcal bacteriophage" Staphylococcus aureus and some other coagulase-negative staphylococci
P332 Perm
Pseugomonaﬁ aeruginosa Pseudomonas aeruginosa N7 Nizhny Novgorod
bacteriophage
" ; ; o P252
Klebs.|ella pne”umomae purified Klebsiella pneumoniae Perm
bacteriophage P251
Klebsiella pneumoniae purified Klebsiella pneumoniae, Klebsiella ozaenae, Klebsiella rhinoscleromatis u27 Ufa
polyvalent bacteriophage
s s ut
. . B taphylococcus spp, Streptococcus spp, Proteus spp,
Purified polyvalent pyobacteriophage Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli u25 Uta
Staphylococcus spp, Enterococcus spp, Streptococcus spp, N74
"Complex pyobacteriophage" enteropathogenic Escherichia coli, Proteus vulgaris, Proteus mirahilis, Nizhny Novgorod
Pseudomonas aeruginosa, Klebsiella pneumoniae, Klebsiella oxytoca N45
N101
Shigella flexneri, Shigella sonnei, Salmonella typhimurium, Salmonella spp, N123
"Intesti bacteriophage" Escherichia coli, Proteus spp, Enterococcus spp, Staphylococcus spp, Nizhny Novgorod
Pseudomonas aeruginosa N86
N175

filtered through a 0.45 pym Millipore filter (Merck Millipore;
USA). A 2x lysogeny broth (LB) (Oxoid; UK) was combined
with the water sample; 300 pL of the overnight bacterial
culture were added to the mixture and incubated on a rocking
shaker at 37 °C for 18 h. Then, bacterial cells were centrifuged
at 3,500 g, and the supernatant was filtered through a 0.22
pm Millipore filter (Merck Millipore; USA). Monoisolates were
obtained through a series of 3 sequential isolations from
negative colonies. The obtained bacteriophages were grown
in 50 ml of LB containing 300 pl of the overnight bacterial
culture. Bacteriophage concentrations in the phage lysate
were measured using a classic double layer agar method
proposed by A. Gratia [16].
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Evaluating the efficacy of commercial phage
products and monobacteriophage lysates

The efficacy of Iytic phages (titers of over 107) was evaluated in a
spot test. Briefly, 0.1 ml of the overnight culture was combined
with 0.6% semi-liquid LB agar. The resulting suspension was
applied onto Petri dishes coated with 1.5% LB agar. After the
top LB agar layer hardened, 5 pl of the studied phage was
applied onto it and incubated at 37 °C for 18-24 h. In 24 h,
either individual negative colonies or a transparent lysis zone
were observed where the agar drop had been applied. If this
was the case, the bacterial strain was considered sensitive
to the tested phage. In the absence of a lysis zone, the
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Fig. 1. Resistance to antibiotics among the strains of K. pneumoniae (A), P. aeruginosa (B), S. aureus (C), and E. faecium (D). The pink shows the proportion of
resistant strains. CIP — ciprofloxacin, TET — tetracycline, ERY — erythromycin, MRP — meropenem, VAN — vancomycin, OXA — oxacillin, CTR — ceftriaxone,

GEN — gentamicin
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bacterial strain was considered resistant to the tested phage.
The efficacy of a phage against a certain bacterial strain was
determined as percentage of susceptible bacterial strains of a
given species in the total pool of strains of this species included
in our collection.

RESULTS

We compiled a collection of 147 bacterial strains, which
included 33 strains of K. pneumoniae (22.5%), 40 strains of
P aeruginosa (27.2%), 50 strains of S. aureus (34%), and
24 strains of E. faecium (16.3%). Susceptibility profiles were
obtained for all strains included in the collection (Fig. 1).

Of 33 K. pneumoniae strains, 9 (27.3%) were sensitive
to all antibiotics they were tested against, 4 (12.1%) strains
were resistant to only one antibacterial drug, and 17 (51.5%)
strains exhibited multidrug resistance. Of 40 P aeruginosa
strains included in the collection, 7 (17.5%) were sensitive to all
antibiotics they were tested against, 15 (37.5%) were resistant
to one antibacterial drug, and 6 (15%) strains fell into the MDR
category.

Of 50 S. aureus strains included in the collection, 19 (38%)
were sensitive to all antibiotics they were tested against, 7
(14%) were resistant to one antibacterial drug, and 22 (44%)
were classified as MDR. Twenty-seven (54%) S. aureus strains
were resistant to oxacillin. There were no susceptible strains
among E. faecium isolates; 3 (12.5%) of 24 E. faecium strains
were resistant to one antibacterial drug, and 19 (19.2%) were
multidrug-resistant. Vancomycin-resistant E. faecium strains
amounted to 12%.

A
43%
ST395 uST23
mST86 u ST268
HST299 uST307
H ST1456 H ST1655
| ST2555 mSTIS
ESTI1 mST268
uST65 B Unique 1
Unique 2
C

ST18  ®mST17

uST78
u ST64
mST60
m ST323
H ST640
u ST806

HST192
uST56

HST202
mST359
HST804
u ST808
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Using MLST, we identified 15 sequence types among
K. pneumoniae strains (Fig. 2A). The most common of them
were ST395 and ST23 represented by 14 (42.4%) and 5
(15.2%) strains, respectively. In addition, two unique sequence
types were identified in this group of pathogens (2-1-1-1-9-4-1
and 2-1-1-1-9-4-18). According to MLST, P, aeruginosa strains
fell into 26 different sequence types (Fig. 2B). ST12 was the
most common sequence type among P aeruginosa strains (5
out of total 40 strains; 12.5%). In addition, 3 unique sequence
types were identified: type 15-5-11-8-4-4-1 represented by 2
strains, type 15-2-11-3-3-38-3 represented by 2 strains and
type 17-5-12-3-14-4-7 represented by 1 strain. E. faecium
strains belonged to 12 different sequence types, the most
common being ST18 (4 out of 24 strains; 16.7%), ST17 (3 of
24 strains; 12.5%), ST78 (3 of 24 strains; 12.5%) and ST192 (3
of 24 strains; 12.5%) (Fig. 2C).

Spa-typing revealed the diversity of S. aureus strains (Fig. 2D) in
our collection. This species was represented by 18 spa-types;
the types t008 and t308 prevailed, accounting for 20 (40%) and
6 (12%) of the total 50 S. aureus strains.

The efficacy of 14 commercial phage products (see
Table 1; Fig. 3) was tested on the compiled collection of
characterized ESKAPE pathogens. The best effect against
K. pneumoniae was observed for "Purified polyvalent
pyobacteriophage", batch number U1, which killed 29
(87.9%) of 33 K. pneumoniae strains (Fig. 3A). The efficacy of
the commercial phage products against P aeruginosa varied
from 76.9 to 92.5% (Fig. 3B). "Staphylococcal bacteriophage"
was effective against 43 (86%) of 50 S. aureus strains (Fig. 3C).
"Intesti bacteriophage", batch number P86, was the only

B

ST12 uST244 uST654
uSTI198 uST207 u ST499
M Unique type 1 M Unique type 2 mST17
M Unique type 3 mST186 mST233
HST235 uST266 u ST357

ST395 m ST483 u ST498
H ST508 H ST569  ST589
uST1094 mST1292 mST1527
u ST2427 = ST2690
D

40%

t008 mt308 mt127
w002 w233 Wt2361
H267 Wt3625 Mt385
024 ®mt030 mt1023
H 331  mt1460 = t190

t015  m 021 t435

Fig. 2. Results of molecular genetic typing for K. pneumoniae (A) P aeruginosa (B) E. faecium (C), and S. aureus (D)
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Fig. 3. The efficacy of commercial phage products against K. pneumoniae (A), P. aeruginosa (B) and S. aureus (C). The green shows the proportion of strains sensitive
to the tested phage products. Batch numbers represent the tested products: "Purified polyvalent pyobacteriophage" (U1, U25); "Complex pyobacteriophage" (N74,
N45); "Klebsiella pneumoniae purified bacteriophage" (P252, P251); "Klebsiella pneumoniae purified polyvalent bacteriophage" (U27); "Pseudomonas aeruginosa

bacteriophage" (N7); "Staphylococcal bacteriophage" (P332, N33).

available bacteriophage against E. faecium; it successfully
infected 24 (4.2%) E. faecium strains.

To compare the efficacy of commercial phage products with
that of natural phages, bacteriophage monoisolates exhibiting
activity against K. pneumoniae and S. aureus were recovered
from natural reservoirs (vB_Kp_M_Seu621 and vB_SauP-436-
3w, respectively). Their titers were 102> PFU/m (for vB_Kp_M_
Seu621) and 10" PFU/m (for vB_SauP-436-3w), respectively.
The efficacy of the vB_Kp_M_Seu621 and vB_SauP-436-3w
monoisolates was 5. 9 and 60%, respectively (see Fig. 3A and 3C).

DISCUSSION

The efficacy of polyvalent phage products against
K. pneumoniae varied from 42.4 to 87.9%; for monoisolates,
this range was narrower: from 33.3 to 78.1% (see Fig. 3A).
This suggests that the phage cocktails used in the study
differed in their composition and should be updated and
tested against currently circulating bacterial strains. The
efficacy of the phage vB_Kp_M_Seu621 (5.9%) isolated from
environmental sources was much lower than the efficacy
of the tested commercial phage products which might be
associated with the diversity of K. pneumoniae capsule types.
The capsule can serve as a receptor for bacteriophages and
determine the efficacy of interaction between the phage and
its host [17].

It should be noted that almost all strains of K. pneumoniae
included in the collection (32 of 33; 97.9%) were sensitive to at
least one of the tested phage products. There was no significant
difference in the efficacy of lysis between MDR and susceptible
strains. The majority of MDR strains belonged to the sequence
type ST395. Strains of this sequence type are very common
among nosocomial pathogens and are associated with the
spread of the blaOXA-48 gene, which confers resistance to
B-lactams [18]. MDR strains representing this sequence type
were susceptible to "Purified polyvalent pyobacteriophage"
(U1); the efficacy of this phage product against ST395 strains
was 81.8% (9 of 11). It also caused lysis of other MDR strains
of K. pneumoniae belonging to the types ST15, ST23, ST268.

The highest efficacy of virulent phages was observed for
P, aeruginosa strains. The efficacy of polyvalent phage products
against this pathogen was 76.2-90%, whereas the efficacy of
monovalent phage products was 87.5% (see Fig. 3B). These
findings correlate with previously published data. A Turkish
study carried out on a small sample of 10 P aeruginosa strains
demonstrated that the efficacy of "Complex pyobacteriophage"
and "Intesti bacteriophage" was 90 and 80%, respectively [19].

Similar to their effect on K. pneumoniae, the tested products
caused lysis of almost all P aeruginosa strains included in our
collection (39 of 40; 97.5%). MDR strains represented by the
types ST235, ST357 and ST654 were successfully lysed by the
majority of the tested phage preparations.
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Monovalent bacteriophage products demonstrated 86%
efficacy against S. aureus ("Staphylococcal bacteriophage",
Fig. 3C). High efficacy of the phage product was earlier reported
by other researchers. For example, the efficacy of the phage
vB_SauM-fRuSau02 isolated from this commercial product
was previously evaluated against 135 staph strains, including
30 strains of coagulase-negative staphylococci [20]. Notably,
S. aureus strains used in the study had different origins: 51
strains were isolated from humans, whereas 54 strains, from
pigs. The efficacy of the phage vB_SauM-fRuSau02 was very
high (96%) against S. aureus isolated from humans. In turn, the
efficacy of this phage against coagulase-negative staphylococci
species and S. aureus strains isolated from animals was lower
(50 and 33%, respectively) [20]. Another study investigated
the efficacy of the commercial phage product "Stafal phage"
(Bohemia Pharmaceuticals; Czech Republic). The study
revealed that bacteriophages isolated from this preparation
effectively killed 83% of MRSA and 99% of MSSA (methicillin
susceptible Staphylococcus aureus) [21].

In our study, all MRSA, as well as MDR strains, were
sensitive to "Staphylococcal bacteriophage" (batch number
N33). One more MRSA strain from the MDR group was
sensitive to another batch of this commercial product (P332).
This strain was represented by the spa-type t127.

The efficacy of the phage monoisolate vB_SauP-436-
3w against the strains included in our collection was lower
(30 of 50; 60%) than the efficacy of the commercial product
"Staphylococcal bacteriophage" (43 of 50; 86%), but still
significantly higher than the efficacy of the phage vB_Kp_M_
Seu621, which effectively killed K. pneumoniae. This can be
explained by the fact that receptors for staphylophages are
represented by teichoic acids of bacterial cells [22], whose
variability is much lower than that of gram-negative bacteria
capsules.

The efficacy of all tested commercial phage products
against E. faecium was poor (1 of 24; 4.2%). The only strain
sensitive to the tested phages was represented by the type
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