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LABELLING OF DATA ON FUNDUS COLOR PICTURES USED TO TRAIN A DEEP LEARNING MODEL 
ENHANCES ITS MACULAR PATHOLOGY RECOGNITION CAPABILITIES

Retinal diseases remain one of the leading causes of visual impairments in the world. The development of automated diagnostic methods can improve the efficiency 

and availability of the macular pathology mass screening programs. The objective of this work was to develop and validate deep learning algorithms detecting 

macular pathology (age-related macular degeneration, AMD) based on the analysis of color fundus photographs with and without data labeling. We used 1200 

color fundus photographs from local databases, including 575 retinal images of AMD patients and 625 pictures of the retina of healthy people. The deep learning 

algorithm was deployed in the Faster RCNN neural network with ResNet50 for convolution. The process employed the transfer learning method. As a result, in 

the absence of labeling, the accuracy of the model was unsatisfactory (79%) because the neural network selected the areas of attention incorrectly. Data labeling 

improved the efficacy of the developed method: with the test dataset, the model determined the areas with informative features adequately, and the classification 

accuracy reached 96.6%. Thus, image data labeling significantly improves the accuracy of retinal color images recognition by a neural network and enables 

development and training of effective models with limited datasets.
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Х. П. Тахчиди1, П. В. Глизница2       , С. Н. Светозарский3, А. И. Бурсов4, К. А. Шустерзон5

РАЗМЕТКА ЦВЕТНЫХ ФОТОГРАФИЙ ГЛАЗНОГО ДНА УЛУЧШАЕТ РАСПОЗНАВАНИЕ МАКУЛЯРНОЙ 
ПАТОЛОГИИ С ПОМОЩЬЮ ГЛУБОКОГО ОБУЧЕНИЯ 

Заболевания сетчатки остаются одной из ведущих причин слабовидения в мире. Разработка методов автоматизированной диагностики может повысить 

эффективность и доступность программ массового скрининга патологии макулярной области. Целью работы было разработать и провалидировать 

алгоритмы машинного обучения для диагностики макулярной патологии на основе анализа цветных фотографий глазного дна с предварительной 

разметкой данных и без нее на примере возрастной макулярной дегенерации (ВМД). В исследовании использовали 1200 цветных фотографий 

глазного дна из локальных баз данных, включая 575 изображений сетчатки пациентов с ВМД и 625 ретинальных фотографий здоровых пациентов.  

Алгоритм глубокого обучения был реализован на основе нейронной сети Faster RCNN c ResNet50 в качестве сверточной основы с использованием 

трансферного обучения. В результате, при отсутствии разметки валидация показала неудовлетворительную точность модели (79%), что было связано 

с неправильным выбором нейросетью областей внимания. Выполнение разметки повысило эффективность разработанной методики, на тестовом 

наборе данных модель продемонстрировала адекватное определение информативных участков, точность классификации достигла 96,6%. Таким 

образом, применение разметки изображений значительно повышает точность распознавания цветных изображений сетчатки с помощью нейросетевых 

технологий и позволяет создавать эффективные модели при использовании ограниченных по объему наборов данных.
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Table 1. Clinical classification of AMD [8]

In the Russian Federation, retinal diseases rank second and 
cause 28.9% of the visual impairment cases [1]. An effective 
retinal pathology early detection system that would be part 
of the mass preventive examination campaigns is yet to be 
deployed. Such systems require special logistics and dedicated 
staff, which, in addition to the one-time deployment expenses, 
translates into the need for regular funding to support the system 
and pay the people powering it. Computers can analyze big 
data faster, and machine learning algorithms automate the 
time-consuming and labor-intensive screening of patients 
to nominate those who need extensive examination. Thus, 
artificial intelligence capable of screening for eye diseases can 
mitigate the primary health care personnel shortage and reduce 
the clinical examination costs while increasing the number of 
patients reasonably referred to an ophthalmologist because of 
the suspected ophthalmic pathology [2].

Age-related macular degeneration (AMD), a retinal disease 
common among people aged 50 and over, remains one of 
the main causes of poor eyesight. The disease manifests in 
soft drusen measuring 63 μm or above in the macular zone, 
hyperpigmentation and/or hypopigmentation of the pigment 
epithelium, detachment of pigment and neuroepithelium, 
pigment epithelium geographic atrophy, retinal hemorrhages 
and cicatricial changes in the retina [3].

AMD is of great clinical and social importance. The 
prevalence of AMD among people aged 50 to 85 years is 
8.69%, with 8.01% being early AMD and 0.37% late stage 
AMD [4]. Mathematical model forecasts growth of the absolute 
number of AMD patients from 196 million in 2020 to 288 million 
in 2040. [4]. Late stage AMD translates into a pronounced 
degradation of central vision, which worsens quality of life, 
limits daily living activities and impairs working capacity. 
Timely detection of the disease and adequate monitoring 
of the patients are instrumental to successful treatment of 
neovascular AMD because the efficacy of antiangiogenic 
therapy directly depends on the time elapsed from the moment 
of manifestation to administration of the first dose of the 
drug [5]. Fundus photography is a widely adopted and highly 
sensitive method of macular pathology visualization; it has been 
used in a number of countries for mass screening and yielded a 
significant increase of the early stage AMD detection rates [6].

The objective of this work was to develop and validate 
machine learning algorithms diagnosing macular pathology 
(AMD) based on the analysis of color pictures of the fundus 
with data labeled and unlabeled, and to assess sensitivity and 
specificity of the developed method with the help of a test 
dataset.

METHODS

The sets of color images of the fundus used in this study 
were collected at the Tsentr Zreniya clinic (Chelyabinsk) and 
the ophthalmological department of the Volga District Medical 
Center under FMBA of Russia (Nizhny Novgorod). All the 
pictures were taken with Visucam 500 fundus camera (Carl 
Zeiss; USA). The inclusion criteria applied to the images were: 
diagnosed AMD in one eye, registered in the patient's digital 

medical record; presence of specific signs of AMD on the 
image; absence of signs of other retinal diseases (diabetic 
retinopathy, etc). Image quality was assessed in points on a 
scale from 1 to 4, the assessment relied on the method by Klais 
C et al., with 1 point given to high quality pictures, 2 points to 
average quality images, 3 points to those of low quality and 
4 points to indiscernible pictures [7]. The images that scored 
3–4 points were rejected. We used the widely adopted clinical 
classification of AMD that distinguishes early, intermediate and 
late stages of the disease (Table 1) [8]. The initial set of images 
was anonymized and blind classified independently by two 
ophthalmologists with over 5 years of experience.

The resulting set included 1200 color fundus photographs, 
including 575 retinal images of AMD patients and 625 pictures 
of the retina of healthy people. Under the AMD classification, 
127 images were classified into the early AMD group, 341 
were marked as intermediate stage and 107 as late stage AMD 
pictures.

The data were distributed into training and test sets 
randomly, with 994 images used in the neural network training 
(475 eyes with AMD, 519 eyes of healthy people) and 206 
photographs used for testing (100 from patients with AMD, 106 
from healthy people). 

To accomplish the task set, we practiced two approaches 
to training: 

1) training a convolutional neural network (CNN) on a 
dataset consisting of binary classified images without specified 
regions of interest;

2) training a CNN on a dataset consisting of binary classified 
images with the regions of interest specified in bounding boxes;

We relied on the ResNet-50 deep learning architecture 
and transfer learning for both approaches [9]. Transfer learning 
involves use of CNNs that are pretrained on a large set of third-
party data. Following pretraining, the network, which already 
has its weighing system set up, goes through training on a 
small set of data of immediate interest. The large set of third-
party data used for pretraining in this work was the ImageNET 
dataset, which includes millions of images divided into 1000 
different classes [10].

Fundus pictures from the local databases were 
preprocessed (converted to 512 × 512 pixel images) and then 
processed by a pretrained Faster RCNN neural network with 
ResNet50 enabling convolution. Each output window was 
linked with a category tag and a softmax score at [0, 1]. A 
score threshold of 0.7 was used to display these images. The 
execution time needed to obtain these results was 120 ms per 
image, all steps included. All in all, the image analysis sequence 
can be outlined as follows: preprocessing, processing by 
the CNN with a feature map as output, highlighting regional 
suggestions thereon, determining regions of interest and 
classifying the image as either an AMD picture or a normal eye 
photograph based on the features found within the regions of 
interest (Fig. 1).

 All algorithms were developed in Python 3.7 using libraries 
PyTorch 1.5.0, TorchVision 0.6.0, Tensorflow 1.14.0, Keras 
2.0.8, Pillow 7.2, OpenCV 4.5.2, Cuda 10.1, cudnn 7.6.5. 
The hardware configuration of the computer used to do the 

Stage Symptoms

Normal age-related changes Small druses up to 63 µm, no pigmentation defects

Early Druses with a diameter of 63-125 microns, no pigmentation defects

Intermediate Druses with a diameter over 125 microns, pigmentation defective

Late Neovascular form or geographic atrophy
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Fig. 1. Stages of image analysis by Faster RCNN 

Classifier

Area of interest

Suggestions

Map of attributes

Convolution 
layers

Fundus image

Network of regional suggestions

Table 2. Developed models' performance indicators reflecting the quality of detection of AMD in color fundus photographs 

calculations was as follows: Intel Core i7 9750H (Intel; USA), 
RTX 2070 Max-Q 8GB GDDR6, 16 GB RAM 2666 MHz.

 
RESULTS

Image classification by a CNN without specified 
regions of interest

All color images of the fundus belonging to the training set were 
reduced to a resolution of 512 × 512 pixels and normalized 
to the average pixel. Then the dataset was submitted to 
the neural network for training. The training lasted 193 min 
and took 50 iterations. A batch (combined load) included 
10 images. Nesterov accelerated gradient was used as 
an optimizer; the learning rate parameter was 0.0005, the 
moment was 0.9. Loss function — categorical cross-entropy, 
metric — accuracy. 

Validation of the resulting model on the test dataset 
revealed that its specificity reached 77.4%, sensitivity — 
80.9%, accuracy — 79% (Table 2). To learn what regions of the 
images the model used for classification we imported the class 
activation heatmaps (Fig. 2). 

As a result, it was found that the network selected the 
areas of attention incorrectly: one of them was the area of the 
optic nerve head, which is not involved in AMD's pathological 
process, another — paramacular area. Thus, the neural 
network used incorrect features in training, which nevertheless 
correlate with the classification result. 

 
Image classification by a CNN with regions 
of interest pre-specified

The training dataset was the same as for the first approach, 
but for this case, we marked the macular region as the 
region of interest with the help of bounding boxes. All the 
images were reduced to a resolution of 512 × 512 pixels 
and normalized to the average pixel. Faster RCNN + FPN 
network combination enabled object detection [11]. The 
training lasted 158 min and took 10 iterations. A batch 
included 10 images. Nesterov accelerated gradient was used 
as an optimizer; the learning rate parameter was 0.0001, the 
moment was 0.05, weight decay — 0.0005. Classification 
categorical cross-entropy was the loss function, mean 
average accuracy was the classification accuracy metric, 

Indicator Machine learning without labeling Machine learning with pre-labeling

Sensitivity 80,9% 99,0%

Specificity 77,4% 94,3%

Accuracy 79% 96,6%

Positive result predictability 74% 94,3%

Negative result predictability 82% 99,0%
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Fig. 2. Class activation heatmap visualization example, fundus photograph of an AMD patient   

Fig. 3. Results of detection of regions of interest and classification of images from the test dataset by Faster RCNN with ResNet50 for convolution. Images correctly 
identified by the model as healthy retina photographs have green boxes, those with AMD detected have red boxes 

intersection over union — detection accuracy metric. The 
training was stopped after 10 iterations because of the 
emerging overtraining effect [12].

On the test dataset, the model demonstrated the 
classification accuracy of 96.6% at sensitivity of 99.0% and 
specificity of 94.3% (Table 2). Visualization of the areas of 
interest showed that the model identified informative areas of 
the images adequately (Fig. 3). 

DISCUSSION

This study showed that Faster RCNN neural network with 
ResNet50 enabling convolution can effectively differentiate 
between AMD patient fundus pictures and those of healthy 

retina. We have also established that even with a small sample 
(1200 images) the resulting classification accuracy can be high 
if the data are pre-labeled.

Researchers investigating application of neural networks 
to diagnose AMD through analysis of color pictures of the 
retina reported sensitivity of 84.5–89.0%, specificity of 
83.1–89.0% and accuracy of 88.4–91.6% [13, 14]. One 
study aimed to detect AMD at the early stage using images of 
the fundus; its authors claimed to have achieved sensitivity and 
specificity of 96.7%, 96.4% [15]. The datasets used in these 
works were not pre-labeled, but each of them relied on the 
sample comprised of over 50000 images, which is an order of 
magnitude greater than the sample used for this study [13–15]. 
In this connection, it is interesting to note that, considering the 



32

ORIGINAL RESEARCH    OPHTHALMOLOGY

BULLETIN OF RSMU   4, 2021   VESTNIKRGMU.RU| |

relatively small dataset employed, by some parameters we 
received comparable results with the help of a simple and fast 
labeling procedure.

A meta-analysis of 13 studies averaged the neural 
networks' sensitivity and specificity in AMD detection at 0.92 
and 0.89, respectively [16]. However, this analysis included 
studies that made use of fundus camera images exclusively 
and works that relied on the pictures obtained with optical 
coherence tomography. Another meta-analysis considered 
papers reporting on the automated AMD diagnosing models 
that processed only color photographs of the retina; this 
analysis averaged the models' sensitivity and specificity at 0.88 
and 0.90, respectively [17].  Thus, the level of accuracy we 
have achieved is comparable to the results of studies based on 
much larger datasets.

It should be noted that instant AMD diagnostics using color 
images of the fundus traditionally underpins the relevant mass 
screening programs, but has limited application in specialized 
care. What shows promise in this field is the determination 
of AMD stages from the available dataset [18–20] and the 
identification of individual pathological elements in the images 
[21], which can serve the purposes of monitoring in the context 
of clinical observation and during clinical trials.

On the one hand, small size of the training dataset and the 
decision to not differentiate between stages of AMD (we used 
one class for all of them) can be considered a limitation of this 
work. On the other hand, with these prerequisites, we managed 

to answer the questions posed. The small dataset confirmed 
that, with a limited sample available at a local database, it is 
possible to successfully develop models capable of automated 
retinal disease diagnosing provided the training dataset is pre-
labeled. The clinical heterogeneity of pathological changes 
allows simulation of a real life screening situation, where it is 
necessary to detect various pathologies with high sensitivity in 
order to refer the patients for further examination.

CONCLUSIONS

Automated diagnostics of retinal diseases, which are among 
the top causes of blindness and poor eyesight, opens new 
opportunities for mass screening for AMD. The fast and 
easy-to-use method of image markup with bounding boxes 
significantly increases accuracy of the developed methods of 
recognition of medical images relying on neural networks. As 
a result, it is possible to achieve high classification accuracy 
even when there are only small local databases available. 
At the same time, it underscores the importance of the role 
played by medical specialists in the development of new 
diagnostic methods based on machine learning, which requires 
consolidation of efforts of ophthalmologists and IT engineers 
in order to create large annotated databases of retinal images 
collected with various models of fundus cameras, which, when 
labeling the data thereon, would ensure high accuracy and 
reproducibility of the results in real clinical practice.
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