FUNCTIONAL FEATURES
MICROGLIA AND PUTATIVE MACROPHAGES OF THE SUBFORNICAL ORGAN: STRUCTURAL AND FUNCTIONAL FEATURES
Guselnikova VV1,2, Razenkova VA1,2, Sufieva DA1,2, Korzhevskii DE1
1 Institute of Experimental Medicine, St Petersburg, Russia
2 St Petersburg State University, St Petersburg, Russia

The subfornical organ is an important regulator of water-salt metabolism and energy balance of the body, involved in the control of the cardiovascular system and immune regulation. The organ comprises several cell populations, among which microglia and macrophages remain uncharacterized. The study aimed at structural, cytochemical, and functional characterization of microglia and macrophages of the subfornical organ in rats. Brain specimens were collected from mature male Wistar rats (n = 8). Microglia and macrophages were revealed by immunostaining with poly- and monoclonal antibodies against calcium-binding protein Iba1 and lysosomal protein CD68; the slides were examined by light and confocal laser microscopy. The study provides a complex morphological characterization of microglial cells and macrophages of the subfornical organ. We demonstrate that the majority of Iba1-expressing cells in this area of the brain are microglial cells, not macrophages. Microglia of the subfornical organ reveals reactivated state, which may reflect structural and functional features of this organ and specific functions of local microglia. Subependymal microglial cells, the processes of which penetrate into the cavity of the third ventricle of the brain, constitute a distinct subpopulation among the Iba1-expressing cells of the subfornical organ. Apart from microglial elements, the subfornical organ contains sparse tissue macrophages with characteristic strong expression of CD68 accompanied by undetectable or weak expression of Iba1.

Keywords: subfornical organ, microglia, macrophages, circumventricular organs

Funding: the study was supported by Russian Science Foundation, RSF Project № 22-25-00105, https://rscf.ru/project/22-25-00105/

Author contribution: Guselnikova VV — literature analysis, interpretation of the results, manuscript preparation; Razenkova VA — fluorescence immunoassay protocols development, confocal laser microscopy; Sufieva DA — histological processing, immunohistochemical staining, light microscopy; Korzhevskii DE — concept and planning of the study, editing of the manuscript.

Compliance with ethical standards: the study was approved by Ethical Review Board at the Institute of Experimental Medicine (Protocol № 1/22 of 18 February 2022) and carried out in full compliance with the 2013 Declaration of Helsinki.

Correspondence should be addressed: Valeria V. Guselnikova
Akad. Pavlova, 12, St Petersburg, 197376, Russia; guselnicova.valeriia@yandex.ru

Received: 27.03.2022 Accepted: 18.04.2022 Published online: 28.04.2022
DOI: 10.24075/brsmu.2022.020

MICРОГЛИЯ И ПРЕДПОЛАГАЕМЫЕ МАКРОФАГИ СУБФОРНИКАЛЬНОГО ОРГАНА: СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ
В. В. Гусельникова1,2, В. А. Разенкова1, Д. А. Суфиева1, Д. Э. Коржевский1
1 Институт экспериментальной медицины, Санкт-Петербург, Россия
2 Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Субфорникальный орган является важным регулятором водно-солевого обмена и энергетического баланса организма, участвует в контроле работы сердечно-сосудистой системы и иммунной регуляции. В состав субфорникального органа входят разные клеточные популяции, среди которых нехарактеризованными оставались микроглия и макрофаги. Целью работы было изучить структурные, цитохимические и функциональные характеристики микроглии и макрофагов субфорникального органа головного мозга крыс. Исследовали образцы головного мозга половозрелых крыс-самцов породы Вistar (n = 8). Для выявления микроглии и макрофагов применяли поли- и монохромные антитела против кальций-связывающего белка Iba1 и лизосомного белка CD68 и анализировали препараты методами световой и конфокальной лазерной микроскопии. В рамках исследования дана комплексная морфологическая характеристика клеток микроглии и макрофагов субфарикального органа. Показано, что большинство Iba1-содержащих клеток этой области головного мозга являются микроглиоцитами, а не макрофагами. Микроглия субфарикального органа находится в предактивированном состоянии, что может быть обусловлено структурно-функциональными особенностями этого органа и специфическими функциями местной микроглии. Среди Iba1-содержащих клеток в субфарикальном органе выявлена особая популяция субэндотелиальных микроглиоцитов, отростки которых проникают в полость третьего желудочка головного мозга. Помимо микроглии в субфарикальном органе обнаружены единичные тканевые макрофаги, для которых характерно высокое содержание CD68, но незначительное количество или отсутствие Iba1.

Ключевые слова: субфарикальный орган, микроглия, макрофаги, циркумвентрикулярные органы

Вклад авторов: В. В. Гусельникова — анализ литературы, интерпретация результатов, подготовка рукописи; В. А. Разенкова — отработка протоколов иммунофлуоресцентных реакций, проведение конфокальной лазерной микроскопии; Д. А. Суфиева — гистологическая проводка биологического материала, постановка иммунофлуоресцентных реакций для световой микроскопии; Д. Э. Коржевский — концепция, планирование исследования, редактирование рукописи.

Соблюдение этических стандартов: исследование одобрено этическим комитетом ФГБНУ «ИЭМ» (протокол № 1/22 от 18 февраля 2022 г.), проведено в полном соответствии с положениями Хельсинкской декларации (2013 г.).

Для корреспонденции: Валерия Владимировна Гусельникова
ул. Акад. Павлова, д. 12, г. Санкт-Петербург, 197376, Россия; guselnicova.valeriia@yandex.ru

Статья получена: 27.03.2022 Статья принята к печати: 18.04.2022 Опубликована онлайн: 28.04.2022
DOI: 10.24075/vrgmu.2022.020
METHODS

The study was carried out on brain specimens of mature (3–5 months old) male Wistar rats \((n=8) \). The animals were purchased at the “Rappolovo” breeding facilities (Leningrad region, Russia) and housed at standard conditions with ambient temperature, 12-h light cycle, and access to food and water. Time after birth and the presence of the blood-brain barrier. Accordingly, its local macrophages and microglia, by contrast with their counterparts in other brain regions, are in continuous contact with various agents circulating in the blood \([3]\), which implies that these cells have certain structural and functional features. An extra focus on microglia and macrophages of the subfornical organ is due to their possible involvement in the course of coronavirus infection. The strong neurotropism of SARS-CoV-2 is a well-established fact \([4]\). The chronic activation status of microglia, which is normal for circumventricular organs, is thought to render it hyper-sensitive and hyper-reactive to pathological stimuli \(\text{(e.g. SARS-CoV-2 infection)} \) \([5]\) and prone to transition into pro-inflammatory phenotypes accompanied by active synthesis of pro-inflammatory mediators and increased rates of phagocytosis. The SARS-CoV-2-associated neuroinflammatory reactions are initiated in circumventricular organs, containing blood-borne agents circulating in the blood \([3]\), which implies that these cells facilitate the spread of neuroinflammation to other brain regions \([5]\), which may be one of the underlying causes of neurological symptoms in patients with coronavirus infections.

This study aimed at structural, cytochemical, and functional characterization of microglia and macrophages of the subfornical organ in rats.
Fig. 1. Iba1-immunopositive cells in rat subfornical organ and adjacent white matter. A. Overall view. B. The boundary between subfornical organ and the underlying white matter. C–E. Different morphotypes of Iba1-immunopositive cells within subfornical organ. SFO — subfornical organ, WM — white matter, V — third ventricle of the brain (cavity); the dashed line indicates the boundary between subfornical organ and white matter; the asterisk indicates blood vessel (lumen); the arrow indicates a small perivascular cell with few processes, containing Iba1. Scale bars, 200 µm (A), 50 µm (B), and 20 µm (C–E).

body and a long non-ramified process (Fig. 1C, brown), another morphotype exhibits relatively thick processes moderately branching in multiple directions (Fig. 1D, brown), whereas the sparse perivascular Iba1-positive cells with few processes are spread over the surface of dilated thin-walled vessels of the subfornical organ (Fig. 1E, arrow).

The fluorescent immunostaining for Iba1 produced similar results (Fig. 2). The subfornical organ region presents with high cellularity revealed by counterstaining of the nuclei with SYTOX Green fluorescent dye (Fig. 2, green fluorescence). Consistently with the corresponding light microscopy assay, the fluorescent immunostaining for Iba1 revealed high density of Iba1-containing cells within subfornical organ (Fig. 2, red fluorescence). Examination of these cells at higher magnifications revealed their considerable morphological heterogeneity. The immunofluorescence assay produced a more contrasted visualization of the thin processes of the Iba1-containing cells compared to light microscopy, which allowed us to describe a specific subpopulation of these cells confined to the ependymal lining of the third ventricle at the level of the subfornical organ. The bodies of these Iba1-immunopositive cells were immediately adjacent to the ependymal layer and often spread over it, and their thin processes permeated the ependymal layer and reached the cavity of the third ventricle (Fig. 2, arrow).

Fig. 2. Immunofluorescent detection of Iba1-positive cells in rat subfornical organ. The Iba1 specific signal is red (Cy3 fluorochrome) and the nuclei are green (SYTOX Green). V — third ventricle of the brain (cavity); the arrow indicates processes of the Iba1-containing cells reaching the ventricular cavity. Scale bar, 20 µm.
Figure 3. Characteristic patterns of Iba1 and CD68 immunostaining in rat subfornical organ. A. Immunohistochemical reaction for Iba1 with alum hematoxylin nuclear counterstaining. B. Immunohistochemical reaction for CD68 with alum hematoxylin nuclear counterstaining; the arrows indicate CD68-immunopositive structures within the subfornical organ; the insert shows a magnified area comprising CD68-immunopositive cell. Images A and B represent histologically identical serial sections of the same specimen (light microscopy). C. Double-fluorescent immunostaining of Iba1/CD68 (confocal laser microscopy). The Iba1 signal is green (Cy2 fluorochrome) and the CD68 signal is red (Cy3 fluorochrome); the arrow indicates a CD68-containing cell; the asterisk indicates blood vessel (lumen). Scale bars, 50 µm (A, B) and 10 µm (B insert, C).

Immunohistochemical detection of CD68

Comparative examination of light microscopy immunostaining images for Iba1 (Fig. 3A) and CD68 (Fig. 3B), representing two histologically identical serial sections of the same brain tissue specimen, revealed much lower density of CD68-positive elements and higher density of Iba1-positive elements in the subfornical organ. Only sparse CD68-positive elements were visualized in the subfornical organ, found in parenchyma or perivascular spaces. Most of the signal appeared as small CD68-immunopositive granules scattered in the nervous tissue (Fig. 3B, arrow). Only a minority of CD68-immunopositive elements had cellular outlines. These few cells were oval or elongated and showed distinct cytoplasmic granularity (Fig. 3B, insert).

As shown by the double-fluorescent Iba1/CD68 immunostaining, the majority of positively stained cells are Iba1+/CD68- (Fig. 3C, green fluorescence). These cells have ramified appearance and heterogeneous morphology, similarly with the Iba1-immunopositive cells revealed by the light microscopy assay. A very minor fraction of cells (solitary cells) in the subfornical organ are Iba1+/CD68+ (i.e. contain CD68, but no Iba1). These cells are oval or elongated, with characteristic cytoplasmic granularity, and no observable processes (Fig. 3C; arrow, red fluorescence). In certain CD68-immunopositive cells, Iba1 was present in small amounts, but it never colocalized with CD68.

DISCUSSION

The subfornical organ remains one of the least studied brain structures. The main scientific findings on its structure and function date back to the 1960–80s. The organ receives synaptic inputs from solitary tract nuclei [8], lateral hypothalamus and medial hypothalamic nuclei [9], while sending projections to diverse brain centers including paraventricular nucleus and lateral hypothalamus [10], arcuate nucleus [11], and median preoptic nucleus [9]. Seminal research on the role of this organ in osmoregulation [12] and control of cardiovascular functionalities [13] also dates to the mid-20th century. The findings obviously need verification and refinement with the use of modern immunomorphological methods, along with the available data on cellular composition of the organ. A comprehensive morphological study on structural and functional features of different subpopulations of neurons, astrocytes, and vascular cells in rat subfornical organ was carried out in 2021 [2]; however, it completely disregarded such important cell types as macrophages and microglia.

Microglia and tissue macrophages of the brain make important contribution to immunity by forming the first-line defense of the central nervous system from various infectious agents capable of crossing the endothelial barrier. Despite their similar functions, these cell populations originate from different embryonic sources [14]. The microglial progenitor cells are formed within the embryonic yolk sac wall during the first wave of hemopoiesis and migrate to the developing brain before the onset of the blood-brain barrier. In the brain, these progenitors differentiate into microglial cells which constitute a self-perpetuating population. Other macrophage lineages found in the brain (meningeal macrophages, perivascular macrophages, choroid plexus macrophages) descend from the erythro-myeloid progenitor cells and hemopoietic stem cells of the embryonic liver and the bone marrow during the second and
the third waves of hemopoiesis. In connection with their yolk sac origin and by contrast with macrophages, the microglial differon comprises no equivalent of the monocyte stage [15–17]. Apart from the origin, microglial cells differ from the “true” brain macrophages both structurally and phenotypically. For instance, microglial cells express unique molecular markers P2RY12, Sall1, and Tmem119 along with very moderate levels of CD45 transmembrane tyrosine phosphatase. By contrast, brain macrophages express CD45 and the major histocompatibility complex class II molecules at much higher levels than microglia, which reflects the important antigen-presenting role of these cells. Also by contrast with microglia, perivascular and meningeal macrophages abhor forty express CD206 protein known as macrophage mannose receptor [18].

It is believed that under normal physiological conditions (in the absence of pathogenic processes) microglial cells have “ramified” morphologies with numerous thin branching processes that constantly monitor the microenvironment for potential hazards (the so-called sentinel or resting microglia). Upon the exposure to pathological stimuli, microglia is converted into active (activated) state with characteristic amoeboid morphologies. The conversion involves substantial enlargement of the cell body (through increase in the perinuclear cytoplasm volume) accompanied by reduction of the processes. These morphological metamorphoses correspond to a functional shift towards increased phagocytic activity and/or cytokine production [19, 20]. In other words, morphological features of microglial cells reflect their functional status.

In this study, we used calcium-binding protein Iba1 (ionized calcium-binding adaptor molecule 1) as a marker to assess the morphological and functional state of microglia in the subfornical organ. It should be noted that, despite its common use as immunohistochemical marker for microglia [21], Iba1 is not uniquely expressed in microglial cells but also detected in typical tissue macrophages, e.g. in Kupffer cells [22]. Immunostaining with anti-Iba1 antibody reveals both resting and activated microglia and all intermediate states as well [20, 23]. The homogeneous distribution of Iba1 protein in the cytoplasm of microglial cells enables the use of anti-Iba1 immunohistochemistry as a valuable tool for detailed morphological characterization of these cells [24]. Our use of anti-Iba1 immunostaining on paraffin sections of rat subfornical organ revealed numerous positive cells with ramified morphology corresponding to microglia. The examination revealed high density of microglial cells in the subfornical organ and their substantial morphological heterogeneity. Although the identified cells had thicker and shorter processes with reduced degree of branching compared with the classical images of resting microglia, we encountered no amoeboid microglial cell morphologies in the studied histological specimens. Apparently, all microglial cells observed by us in the subfornical organ can be assigned with intermediate status loosely defined as “preactivated”.

It is important to emphasize that the subfornical organ is a circumventricular organ which lacks the blood-brain barrier. The signs of microglial activation under normal physiological conditions have been previously described for other circumventricular organs. The physiologically activated microglia in circumventricular organs of mice [3] shows overall reduction in the length and number of microglial cell processes compared with other brain regions, accompanied by elevated expression levels of certain molecular markers. The high degree of microglial activation under normal physiological conditions was also observed in the median eminence area of rat brain [25].

Exact causes of the chronic microglial activation observed in circumventricular organs are disputable. Obviously, the condition reflects specific physiological features of these organs. One of such features is the presence of fenestrated capillaries, resulting in the constant exposure of microglial cells to antigens circulating with the blood (by contrast with microglia in other brain regions protected by the blood-brain barrier). A likely responsibility of microglia under these conditions is phagocytosis of neurototoxic molecules that arrive from circulation in order to ensure the maintenance of tissue homeostasis [3]. Another possible function of the activated microglia is its participation in tissue remodeling. Circumventricular organs are sparse signal and very few CD68-containing cells morphologically similar to macrophages within the subfornical organ. The vast majority of Iba1-immunopositive cells in the subfornical organ do not express CD68, which identifies them as microglia. The absence of CD68 molecules in these cells reveals their rudimentary lysosomal capacity despite the distinct morphological signs of activation. Apparently, the chronic preactivated state of microglia in the subfornical organ has little to do with active phagocytosis and its biological meaning has yet to be discovered. Unexpectedly, the identified CD68-immunopositive macrophages of the subfornical organ contained negligible amounts of the Iba1 protein. According
to the literature, tissue macrophages of the brain express Iba1 in high amounts, which is consistent with our own data for other brain regions in rodents and also in humans [35, 36]. Its low expression in tissue macrophages of subfornical organ may represent a unique cytochemical feature of this local macrophage population.

CONCLUSIONS

The majority of Iba1-containing cells in the subfornical organ are microglial cells, not macrophages. Microglia of the subfornical organ reveals praeactivated state, which may reflect physiological features of this organ and specific functions of local microglia. The subfornical organ contains specific population of subependymal microglial cells, which project into the third brain ventricle and contact cerebrospinal fluid with their processes. Apart from microglia, the organ contains solitary tissue macrophages with high content of CD68 and low or negligible expression of Iba1. Continued research on microglia and macrophages is important, considering their regulatory role in normal functioning of the nervous system and notably their involvement in neuroinflammatory and neurodegenerative processes, particularly in the context of targeted pharmacotherapy for neurodegenerative diseases.

References

Литература

20. Dzhamaldinova ER, Talavrov R, Pastior AM. Interactions between

