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STUDY OF THE HUMAN BRAIN POTENTIALS VARIABILITY EFFECTS IN P300 BASED 
BRAIN–COMPUTER INTERFACE

The P300-based brain–computer interfaces (P300 BCI) allow the user to select commands by focusing on them. The technology involves electroencephalographic 

(EEG) representation of the event-related potentials (ERP) that arise in response to repetitive external stimulation. Conventional procedures for ERP extraction and 

analysis imply that identical stimuli produce identical responses. However, the floating onset of EEG reactions is a known neurophysiological phenomenon. A failure 

to account for this source of variability may considerably skew the output and undermine the overall accuracy of the interface. This study aimed to analyze the effects of 

ERP variability in EEG reactions in order to minimize their influence on P300 BCI command classification accuracy. Healthy subjects aged 21–22 years (n = 12) were 

presented with a modified P300 BCI matrix moving with specified parameters within the working area. The results strongly support the inherent significance of ERP 

variability in P300 BCI environments. The correction of peak latencies in single EEG reactions provided a 1.5–2 fold increase in ERP amplitude with a concomitant 

enhancement of classification accuracy (from 71–78% to 92–95%, p < 0.0005). These effects were particularly pronounced in attention-demanding tasks with the 

highest matrix velocities. The findings underscore the importance of accounting for ERP variability in advanced BCI systems.
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И. П. Ганин    , А. Я. Каплан

ИЗУЧЕНИЕ ЭФФЕКТОВ ВАРИАТИВНОСТИ ПОТЕНЦИАЛОВ МОЗГА ЧЕЛОВЕКА В ИНТЕРФЕЙСЕ 
МОЗГ–КОМПЬЮТЕР НА ВОЛНЕ P300

Технология интерфейс мозг–компьютер на волне P300 (ИМК-P300) позволяет пользователю выбирать команды при фокусировании на них внимания. Это 

возможно за счет регистрации в ЭЭГ потенциалов, связанных с событиями (ПСС), возникающих в ответ на многократно повторяемые внешние стимулы. 

Традиционно при выделении и анализе ПСС полагают, что реакции на отдельные стимулы идентичны, хотя в нейрофизиологии известен феномен 

вариативности во времени возникновения таких реакций. Поэтому есть предпосылки считать, что непринятие во внимание вариативности ПСС в ряде 

случаев может снижать наблюдаемые в эксперименте эффекты, а также точность работы ИМК. Целью работы было изучить эффекты вариативности 

ЭЭГ-реакций внимания пользователя к стимульным командам в ИМК-P300 и выявить возможности учета этих эффектов при классификации 

команд в интерфейсе. Здоровым испытуемым 21–22 лет (n = 12) необходимо было реагировать на целевые стимулы в модифицированной нами 

стимульной матрице ИМК-P300, которая могла двигаться с различными параметрами в пределах рабочего поля. В исследовании показано, что эффект 

вариативности ПСС присутствует в технологии ИМК-P300, а использованный метод коррекции латентности пиков в единичных реакциях привел к 

увеличению амплитуды компонентов ПСС в 1,5–2 раза, а также повышению точности классификации с 71–78% до 92–95% (p < 0,0005). Вариативность и 

повышение классификации после коррекции латентности были выше в более требовательном по ресурсам внимания режиме с наибольшей скоростью 

движения стимульной матрицы. В целом результаты показывают важность учета вариативности компонентов ПСС в ИМК-P300 для создания более 

эффективных систем нейроуправления. 

Ключевые слова: интерфейс мозг-компьютер, электроэнцефалограмма, потенциалы, связанные с событиями, компонент P300, компонент N1, вари-
ативность ПСС
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The brain–computer interfaces (BCI) enable the use of executive 
devices without mediation of peripheral nerves and muscles. 
The technology involves recording and transformation of the 
electrical activity of the brain, most commonly by means of 
electroencephalography (EEG) [1]. The conventional scope of 

applications for BCI includes neurorehabilitation and replacement 
of speech and locomotion output in patients with severe motor 
impairments [2]. Other applications of BCI include their use as 
accessory means of instrumental diagnostics, e.g. in autism [3] 
or anorexia nervosa [4], as well as in cognitive training devices [5].
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BCI systems based on exposure to external stimuli 
and detection of event-related potentials (ERP) by EEG are 
considered the most efficient in terms of communication 
and control [6]. A pioneering interface for text typing termed 
P300 BCI was firstly published in 1988 [7]. The user is 
presented with a letter matrix and receives the stimuli in 
the form of sequential highlighting of the letters. The mental 
response to the highlighting of target letters is accompanied by 
enhancement of certain ERP components, notably the P300 
wave. Based on ERP analysis, the interface identifies the letter 
on which the user's attention is focused at the moment (target 
stimulus) [8].

The general classification principle in BCI (subdivision of 
EEG reactions into target and non-target classes) is based on 
the fundamental technique of ERP extraction and analysis. The 
technique employs the accumulation of epochs corresponding 
to identical repetitive stimuli as a substrate for ERP extraction. 
The averaging of these 'identical' epochs reveals a coherent 
ERP signal against the background noise which is incoherent 
to the moment of stimulation [6].

The variability of latency of individual EEG reactions from 
the moment of stimulation is a well-known neurophysiological 
phenomenon [9]. A failure to account for this source of 
variance can substantially distort the output of individual ERP 
components [10]. This effect involves both early and late 
components of EEG reactions [11, 12], with the averaged P300 
wave being particularly vulnerable [13]. As a consequence, the 
amplitude of the component decreases and the width increases 
[14]. Beyond its fundamental interest, the temporal variability of 
ERP should be regarded as a major hindrance for P300 BCI 
classification accuracy.

The latency of ERP components, notably P300, is known 
to correlate with the age, cognitive status of the subject 
and other parameters [15, 16]. Deviations in characteristics 
of isolated responses to external stimuli can be observed in 
the divided attention tasks; the variability positively correlates 
with the complexity of the second task (i.e. its competitiveness 
for perception resources) [16]. The process of achieving a 
final goal with BCI (text typing) and execution of immediate 
instructions (reacting to stimuli) may be competing tasks 
themselves. In addition, the practical use of BCI technology in 
real-world settings is usually accompanied by collateral tasks 
and events that promote continuous variations in attention and 
perception [17]. It should be noted that additional source of 
multidirectional destabilization of ERP characteristics, including 
variability, involves the stimulation parameters per se: in BCI, the 
presentation rate is usually high, up to 4–5 stimuli per second [8], 
whereas the majority of standard protocols for ERP acquisition 
use presentation of one stimulus in 1–2 seconds [18].  

From a neurophysiological perspective, variations in the 
brain output are rooted in the hierarchical complexity of the 
nervous system organization, so that these variations are 
generally considered inherent for the brain [19]. However, the 
elevated overall levels of such variation have been associated 
with certain pathologies. The abnormally high levels of neuronal 
noise and plasticity may interfere with the integrity of external 
stimuli processing and production of adequate behavioral 
responses, e.g. in autism [19, 20]. The increased variability of 
ERP was also demonstrated in patients with attention deficit 
hyperactivity disorder, especially under conditions of cognitive 
challenge [19, 21]. 

The cognitive fatigue of the user, a major cause of variability 
in EEG reactions [22], may negatively affect the neurocontrol 
efficacy in healthy users and even more so in patients. People 
with locomotion and speech impairments often have reduced 

attention capacities possibly accompanied by cognitive deficits. 
Such users tend to quickly get tired and may experience 
difficulties upon sustaining the control in BCI [23, 24].

Therefore, the effects of ERP variability in P300 BCI should 
be given immense consideration. On the one hand, proper 
understanding of the variability patterns will allow enhancement 
and optimization of the stimulus environment in terms of 
efficiency; on the other hand, it will mitigate the undesirable 
effects of variability to facilitate mastering of this technology 
by healthy users and notably by patients with neurocognitive 
impairments. This study aimed to analyze the effects of ERP 
variability in EEG reactions in order to minimize their influence 
on P300 BCI command classification accuracy.

METHODS

The study used EEG data obtained earlier in a modified version 
of P300 BCI with a stimulus matrix moving freely within the 
visual field. The details of this modification and some results 
obtained with its use were described by us previously [25]. 
The current study deals with identification and evaluation of 
ERP variability effects possibly encountered by users of such 
interfaces.

The recording was carried out at the Faculty of Biology, 
Lomonosov Moscow State University, and enrolled 12 
participants (four men and eight women) aged 21–22 years. 
Inclusion criteria: healthy volunteers of both sexes, aged 18–35 
years. Exclusion criteria: diagnosed neurological and/or 
mental conditions, a history of convulsive seizures episodes 
or diagnosed status epilepticus. The study initially intended to 
test the feasibility of ERP-based monitoring of the subject's 
attention to continuously moving target stimuli [25].

The participants (subjects) were presented with a 3 × 3 
icon matrix, angular dimensions 7.4° × 7.4°, single stimulus 
size 2.2° × 2.2°. The stimulation was performed by highlighting 
(125 ms in every 500 ms) of the rows and columns of the matrix 
in random order.

The subjects were tasked with focusing their attention on a 
target stimulus within the matrix, carefully follow this stimulus, 
and mentally count the number of highlights encompassing this 
stimulus.

The study used various modes and velocities of matrix 
motion within the screen limits. The matrix moved at a constant 
speed in a straight direction inverted upon reaching the edge of 
the screen. A total of six modes were used in the study:

– 'static matrix' (motionless, positioned at the center of the 
screen);

– 'horizontal movement' (at 5°/s);
– 'vertical movement' (at 5°/s);
– 'random movement' (at 5°/s, the direction could change 

at random moments of time);
– 'velocity 10°/s' (horizontal movement);
– 'velocity 20°/s' (horizontal movement).
Each participant was exposed to all modes succeeding in 

random order. Each mode encompassed presentations of 120 
target and 240 non-target stimuli. 

The EEG recordings were carried out with six scalp 
electrodes (Cz, Pz, PO7, PO8, O1 and O2) and a common 
reference electrode attached to ear lobule, using an NVX 
24 electroencephalograph (Medical Computer Systems; 
Zelenograd, Russia) at 250 Hz discretization frequency. We 
used the CONAN-NVX software for the recording and original 
software written in Python 2.6 for the stimuli presentation. 
Synchronization of EEG recording with the highlightings 
involved a photodiode sensor. Simultaneously with the 
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Fig. 1. Color maps of single target EEG epochs for subject #1, 'static matrix' mode, leads Pz and PO8. Horizontal axis represents time, ms; vertical axis represents 
individual epochs numbered and sorted by the number from top to bottom, with the moving average-based vertical smoothing applied in series of 10. A. The epochs 
are sorted in chronological order (as recorded). B. The epochs are sorted by peak latency for P300 (Pz) or N1 (PO8). In charts A and B the epochs are synchronized 
by the moment of stimulus presentation (vertical dashed lines). C. Peak latency-corrected epochs with dashed lines indicating the moment of stimulus presentation
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appearance of the target/non-target stimulus, a small white/
black square appeared in the upper right corner of the screen 
exactly beneath the sensor. The signal from the sensor was 
recorded along with the EEG data in a separate channel, and 
the change in brightness beneath the sensor made it possible 
to accurately determine the actual moments of presentation.

The signal processing including ERP extraction and analysis 
was carried out in MATLAB 9.11 (R2021b) (MathWorks; USA). 
The EEG signal was band-pass filtered within 0.5–20 Hz range 
(0.5–10 Hz for working with single epochs and calculating 
classification) using a fourth-order Butterworth filter and split 
into epochs from –400 to 1200 ms time-locked to the stimulus 
onset. The artifact epochs containing +/– 50 µV excess of 
signal amplitude in any of the channels were excluded. The 
percentage of excluded epochs was usually within 10%.

The epochs were classified into target and non-target and 
averaged within each class, subject and mode. The procedure 

yielded target and non-target ERP in a reduced –200 to 800 
ms window. The amplitude of P300 was determined as the 
maximum signal value in Pz lead within a 300–600 ms window. 
The amplitude of N1 component was determined as the 
minimum signal value in PO7, PO8, O1 and O2 leads within a 
100–300 ms window. Peak latencies were measured from the 
stimulus onset. 

To analyze the component variability, P300 and N1 peak 
latencies were calculated similarly in the same channels and 
windows, albeit using single, non-averaged epochs. The 
epochs within each lead, mode and subject were sorted 
(ordered) based on these latencies. To analyze the variability 
of latencies, the median absolute deviation (MAD) value was 
calculated within each mode for each subject individually. To 
analyze the effect of component variability on calculated ERP, 
all epochs were centered on the peak time prior to averaging: 
each epoch was shifted by the subtracted difference between 
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Fig. 2. An example of averaged target ERP (subject #1) acquired in the 'static matrix' mode. Gray curves correspond to standard method of ERP averaging (no latency 
correction applied), black curves correspond to the use of peak latency-corrected epochs for P300 (Pz) and N1 (PO8). Vertical dashed lines (0 ms) indicate the moment 
of stimulus presentation; red lines indicate the latency of particular component in a given lead
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the latency in the averaged ERP and its own specific latency, 
forward or backward along the time axis, after which the epochs 
were averaged conventionally in a –200 to 800 ms window. In 
Cz and Pz leads the epochs were corrected by P300 and in 
occipital leads the epochs were corrected by N1. The peak 
amplitudes were subsequently calculated for the averaged 
corrected ERP. For the group analysis of N1 amplitudes, the 
values were calculated using the curves averaged over four 
occipital leads (PO7, PO8, O1 and O2). 

To assess the variability of the ERP components subject-
wise, the amplitudes were calculated for individual EEG epochs 
(raw and latency-corrected); in each epoch, the average signal 
value was calculated in a 52 ms window centered on the peak 
latency for a particular lead and mode.

To identify the effects of ERP variability on the command 
classification accuracy in P300 BCI, offline classification scores 
were calculated for all subjects in each mode, separately 
for the initial averaged ERP and for the latency-corrected 
epochs. The feature vectors for the linear Fisher discriminant 
analysis in each mode were built based on signal amplitudes 
in all EEG channels, spanning 600 ms post-stimulation (one 
point per 50 ms). The classification accuracy was assessed 
by cross-validation (leave-one-out) with sequential testing of 
each epoch with a classifier trained on all other epochs of the 
same mode. The procedure was repeated for all epochs, and 
the classification accuracy was assessed as the percentage of 

correctly identified epochs (two classes: target and non-target). 
To correctly calculate the accuracy before classification, the 
quantities of target and non-target epochs were equalized by 
randomly deleting a subset of non-target epochs. To exclude 
sampling-related variations, this classification process was 
repeated 100 times with random elimination of non-target 
epochs and the accuracy values obtained over 100 iterations 
were averaged.

All quantitative data (amplitudes, latencies and classification 
accuracy values) were analyzed using STATISTICA 7.0 package. 
One- or two-way analysis of variance (ANOVA) was used for 
group analysis. The Tukey's or Benjamini–Hochberg's post-
hoc tests were applied in cases of significant main effects in 
pairwise comparisons. The analysis of component amplitudes 
within subjects involved the normality check by χ2 (Chi-square) 
test followed by paired Student's t-test.

RESULTS

To visualize the accumulations of single EEG epochs (before 
ERP averaging), the time was plotted horizontally, the epochs 
were plotted vertically one by one and the amplitude values 
were color-coded [11]. This method allows representation 
of different grouping options for individual epochs and 
accentuates the effects of their variability. Fig. 1 shows an 
example of such representation of target epochs for a single 
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Fig. 4. The offline classification accuracy for different modes, calculated by the standard method (no latency correction applied) as opposed to the use of peak latency-
corrected epochs for P300 and N1. Heights and error bars correspond to means and standard errors of the mean, respectively (n = 12)
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participant, acquired in Pz and PO8 using the 'static matrix' 
mode. In Fig. 1A, arrangement of the epochs from top to 
bottom corresponds to their actual chronological order. In 
Fig. 1B, the epochs are sorted by latency so that epochs with 
earlier peaks of P300 (in Pz) or N1 (in PO8) are located at the 
top. Fig. 1C shows the latency-corrected epochs, i.e. adjusted 
with the use of averaged latency value for particular mode and 
channel. For better clarity, we applied vertical smoothing by the 
'moving average' in 10 epoch series. 

Fig. 2 shows ERP obtained by averaging of raw and latency-
corrected epochs for the same participant (subject). The 
latency-corrected amplitudes of both components significantly 
exceeded the initial values obtained by raw averaging without 
correction for the peak latency. These differences were 
significant for all subjects in all modes (p < 0.001, paired 
Student's t-test).

We further analyzed the influence of latency correction 
procedure on the calculated amplitudes of P300 and N1 
components at the group level; the results are presented in 
Fig. 3. The amplitudes of P300 and N1 obtained with the 
latency-corrected epochs were significantly higher compared 
to those calculated by conventional method. Two-way ANOVA 
('latency correction' factor — two levels, 'motion type' factor — 
four levels including the 'static matrix' mode) revealed significant 
effect of latency correction on the amplitudes of P300: 
F(1,11) = 95.7 and λ = 0.10 at p = 0.000001, and N1: F(1,11) = 58.1 
and λ = 0.16 at p = 0.00001. The 'motion type' factor had 
significant effect on P300: F(3,9) = 7.5, λ = 0.29 at p = 0.008 
(a lower amplitude for horizontal movement), but not N1. 

The analysis of 'latency correction' and 'velocity' factors 
(comprising, respectively, two and three levels) revealed 
significant influence of the 'latency correction' factor on the 
amplitudes of P300: F(1,11) = 88.5 and λ = 0.11 at p = 0.000001, 
and N1: F(1,11) = 46.6 and λ = 0.19 at p = 0.00003, despite the 
lack of significant influence from 'velocity', and significant 
interaction between the two factors for N1 component: 
F(2,10) = 10.4 and λ = 0.32 at p = 0.0036 (a tendency towards 
lower amplitude at the highest velocity identified with the use of 
conventional averaging of the epochs). 

The group analysis of ERP variability using MAD indicator 
of the peak latency revealed certain statistically significant 
effects. The movement velocity factor (three levels) significantly 
affected N1 component in PO8, O1 and O2 leads: F(2,22) = 4.4 
at p = 0.024, F(2,22) = 3.8 at p = 0.037 and F(2,22) = 4.9 at 
p = 0.017, respectively. Post-hoc analysis revealed a higher 

variability (expressed through MAD) upon using the highest 
velocity mode compared to slower movement. The effects 
observed in O1 and O2 leads were significant (p < 0.05), 
whereas in PO8 the differences amounted to a trend (p < 0.1). 
The analysis revealed no significant effects of the 'motion type' 
factor on N1 component and the 'motion type' and 'velocity' 
factors on P300 component.  

Fig. 4 compares the offline classification accuracy for the 
standard ERP extraction algorithm as compared to the use of 
P300 and N1 peak latency-corrected data. Two-way ANOVA 
('latency correction' factor — two levels, 'motion type' factor —
four levels) revealed significant effect of the latency correction 
procedure on classification accuracy: F(1,11) = 102.7 and 
λ = 0.09 at p = 0.00001. Post-hoc analysis revealed higher 
classification accuracies when using latency-corrected epochs 
in all four modes (94.7, 92.2, 93.2 and 94.8%) compared with 
the conventional ERP extraction procedure (respectively, 78.3, 
78.1, 78.3 and 76.1%; p < 0.0001 for all modes). Two-way 
ANOVA ('latency correction' factor — two levels, 'velocity' 
factor — three levels) revealed significant effects of both 
the calculation method and the matrix movement velocity: 
F(1,11) = 110.0 and λ =0.09 at p = 0.00000; F(2,10) = 6.0 and 
λ = 0.46 at p = 0.0196, as well as significant interaction between 
these factors: F(2,10) = 11.5 and λ = 0.30 at p = 0.0026. Post-
hoc analysis revealed higher classification accuracy when 
using latency-corrected epochs in all three modes (92.2, 93.7 
and 94.0%) compared with the conventional ERP extraction 
procedure (respectively, 78.1, 76.7 and 71.2%; p < 0.0005 for 
all modes). Of note, in the highest velocity mode, the accuracy 
was significantly lower than in two other modes (71.2% vs 78.1 
and 76.7%; p < 0.05) unless the latency correction was applied.

DISCUSSION

Overall, the obtained results confirm that ERP variability is 
inherent to P300 BCI and should be considered as a major 
influence on the shapes of ERP components; the exact impact 
depends on the degree of attention involvement. Correction 
of such variability at the level of single EEG reactions can 
substantially improve the command interpretation accuracy.

Despite the fact that ERP approach relies on the averaging 
of multiple EEG reactions to a stimulus, at certain signal 
processing parameters the detection of individual reaction 
peaks is quite feasible. This statement is illustrated well by our 
data (Fig. 1) along with other studies [9, 10, 12]. Importantly, 
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the analysis of single epochs allows correction for the variable 
peak latency in individual realizations of the response to 
ultimately afford a better extraction quality and enhanced 
amplitude for the components of interest (Fig. 2). Despite the 
well-established phenomenon of variable latency, prediction of 
its specific impact in P300 BCI is nontrivial, as the conventional 
BCI stimulation rates are considerably higher compared with 
those typically used in psychophysiological studies. One one 
hand, this difference can mitigate the variability and stabilize the 
temporal heterogeneity of the reactions; on the other hand, it 
might also augment the heterogeneity and complicate correct 
interpretation of the stimulus at higher rates of presentation, 
as the suboptimal conditions for the attention/concentration 
activity may promote a concomitant increase in ERP variability 
[20]. The variable latency has been attributed to the inherent 
variance of time required for perception and categorization of 
the stimulus in every single presentation event [26]. We show 
that accounting for the variability effects allows significant 
enhancement of the amplitude for components that represent 
attention to target stimuli at both individual and group levels 
(Figs. 2 and 3). 

Despite the lack of significant effects of different matrix 
motion modes on the amplitudes, MAD index showed 
increased variability of N1 component at higher velocities of 
the matrix. The decrease in visual acuity upon increase in the 
speed of tracked objects [27] has been associated with a 
concomitant increase in attention costs. Given the profound 
association of ERP components with specific features of 
oculomotor functionality [28], the observed increase in N1 
component variability at higher velocities can be explained 
by the inherent attention variance combined to the pressing 
demand for tracking the matrix cells. The observation is also 
consistent with the decreased amplitude of N1 component in 
the difference (target — non-target) waveforms reported by us 
previously [25]. Noteworthy, the effect is characteristic of this 
earlier component, sensitive to target events at the eye fixation 
point [29], but not of the later P300 component. 

Apart from its fundamental relevance, the developed 
correction procedure is of clear applied interest. The accounting 
for the latency factor in ERP components significantly rescued 
the accuracy of target stimuli classification in the modified 

P300 BCI environment used by us in this study (Fig. 4). The 
temporal variability of ERP has been already featured as a 
putative cause of poor individual performance in BCI [17]. 
However, the authors suggested to improve the accuracy by 
using the amplitude values of the classifier output instead of 
the raw peaks in EEG epochs, which may seem less consistent 
and efficient, as the classifier output is more prone to external 
influences (noise, etc.). Another study has indeed succeeded in 
increasing the accuracy of P300 BCI output by means of latency 
correction for P300, albeit in a narrow window; overall, the 
method provided no classification benefits compared with the 
conventional approach [26]. Besides, the authors themselves 
emphasize irrelevance of their algorithm for online use, since it 
requires the explicit target/non-target labeling of each epoch. 
By contrast, our setting significantly enhances the classification 
accuracy through correction of the latency for both P300 and 
N1 components known to provide comparable contributions 
[30] and is equally suitable for the online mode as the correction 
is applied to both target and non-target epochs. It should be 
noted that the initial accuracy at the highest velocity was lower 
(71%) than in other modes (76–78%) and that introducing the 
latency correction rendered the accuracy ubiquitously high 
(92–95%) in all modes. This result underscores the utility of 
the developed correction approach in similar and even more 
attention-demanding BCI operation modes.

CONCLUSIONS

The dedicated analysis at the level of single EEG epochs enables 
overall correction for the variable latencies in a modified P300 
BCI environment. Correction for this major source of variability 
refines the target ERP components with a concomitant 
improvement in the command classification accuracy. By 
using a movable stimulus matrix, we demonstrate particular 
relevance of the developed correction procedure under 
conditions of increased cognitive demand modeled by higher 
movement velocity. Taken together, our findings underscore the 
importance of accounting for ERP variability in the development 
of P300 BCI environments and provide the basis for creation 
of advanced ERP-based systems of neurocontrol, particularly 
those intended for people with reduced attention capacities.
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