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IDENTIFICATION OF PROGNOSTICALLY SIGNIFICANT DNA METHYLATION SIGNATURES IN PATIENTS
WITH VARIOUS BREAST CANCER TYPES
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Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of female mortality. The development of prognostic models based on
multiomics data is the main goal of precision oncology. Aberrant DNA methylation in BC is a diagnostic marker of carcinogenesis. Despite the existing factors of BC
prognosis, introduction of methylation markers would make it possible to obtain more accurate prognostic scores. The study was aimed to assess DNA methylation
signatures in various BC subtypes for clinical endpoints and patients' clinicopathological characteristics. The data on methylation of CpG dinucleotides (probes)
and clinical characteristics of BC samples were obtained from The Cancer Genome Atlas Breast Cancer database. CpG dinucleotides associated with the selected
endpoints were chosen by univariate Cox regression method. The LASSO method was used to search for stable probes, while further signature construction and
testing of the clinical characteristics independence were performed using multivariate Cox regression. The dignostic and prognostic potential of the signatures
was assessed using ROC analysis and Kaplan—Meier curves. It has been shown that the signatures of selected probes have a significant diagnostic (AUC 0.76-1)
and prognostic (p < 0.05) potential. This approach has made it possible to identify 47 genes associated with good and poor prognosis, among these five genes
have been described earlier. If the genome-wide DNA analysis results are available, the research approach applied can be used to study molecular pathogenesis
of BC and other disorders.
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OMPELENEHUE MPOrHOCTUYECKN SHAYMMOW CUIHATYPbI AHK-METUJIMPOBAHUA Y NALUMEHTOK
C PA3JINYHBIMU TUMAMU PAKA MOJIOYHOWN XXEJIE3bI
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Pak mono4How »xxenesbl (PMXK) — Hanbonee 4acTo AuarHoCTUpyeMoe OHKONOrM4eckoe 3aboneBanne 1 OaHa 13 BegyLLnX NPUHMH CMEPTHOCTU CPEAM XKEHCKOro
HaceneHus. PaspaboTka MPOrHOCTUHYECKMX MOAENel C MCMOMb30BaHMEM MYMBTVIOMUKCHBIX OaHHbIX SBASETCS MMaBHON LieNblo MPELM3VOHHON OHKOMOMK.
AbeppaHTHoe MetunmpoBaHne OHK B PMPK npenctaBnsieT cobon MHGOPMaTVBHBIA Mapkep KaHLeporeHesa. HecMmoTpst Ha CylLecTBytoLme hakTopbl
nporHoda PMPK, BBefieHVE MapKepoB METUANPOBAaHWS MO3BONUT NOJTy4aTb Bonee TOHHYIO MPOrHOCTUHECKYIO OLIEHKY. Llenbto paboTbl 6bI10 n3y4nTb CUrHaTypb!
mMeTunmpoBaHua JHK B pasnunyHbix nogtunax PMIK Ans KMHUHECKUX KOHEYHBIX TOYEK U KIMHUKO-MATONOMMHECKNX XapakTepUCTUK NaumeHToK. [aHHble 06
YPOBHSAX MeTUMPOoBaHua CpG-AnHYKNEOTUAOB (30HOO0B) U KNMHUYECKNE XapaKTepuCTnk 06paduoB PMXK 6binm nony4deHbl 13 6a3bl AaHHbIx The Cancer Genome
Atlas Breast Cancer. C nomoLLblo MeToga 0fHOMEPHON perpeccun Kokca 6binmn BeibpaHbl CpG-anHYKNeoTabl, aCCOLUMMPOBAaHHbIE C BbIOPAHHbIMN KOHEHYHBIMU
To4kamu. MeTogom LASSO ocyLLecTBsSIM NOUCK CTabubHbIX 30HAOB, a AaslbHelllee NOCTPOEHNE CUTHATYP M HE3aBUCUMOCTD KITMHUHYECKIMX XapakTepUCTUK
BbIMOMHAMN C MOMOLLbIO MHOrO(akTopHOM perpeccun Kokca. [AuarHOCTUHECKUA U MPOrHOCTUYECKWIA NMOTEHLMAN CUrHATyp OLEH1BaIM C MOMOLLBIO METOAA
ROC-aHanmnsa v kpubix Kannan-Marepa. NokasaHo, 4TO curHaTypbl OTOBpaHHbIX 30HAO0B OBnafatoT 3HauMMbIM auarHoctndeckum (AUC ot 0,76 go 1) m
nporHocTuydecknM (p < 0,05) noTeHumanom. C NOMOLLIbO aHHOMO MOAXOAa YAANOCh MAEHTUMULMPOBATL 47 reHOB, CBA3aHHbIX C XOPOLLMM 1 MAOXVIM MPOrHO30M,
13 KOTOPbIX NATb Y>Ke Oblnn onmcaHbl paHee. MNpu Hanm4nn pesynsTaTos LUMPOKOrEHOMHOrO aHanmaa JHK nprMeHeHHbI MCCnenoBaTensCKUN MOAXOL, MOXHO
1ICNONBb30BaTh AN19 U3YHEHVst HE TONbKO MONEKyNsapHOro natoreHesa PMXK, HO 1 anga gpyrux 3abonesaHni.
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According to the Global Cancer Observatory (GLOBOCAN), common type of cancer all over the world [1], is a highly
about 2.3 million of new breast cancer (BC) cases and 684,996  heterogeneous disease with varying molecular and clinical
deaths from BC were reported in 2020. BC, being the most  characteristics [2].
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Today, BC subtypes are defined by immunohistochemical
(IHC) staining of tumor tissue [3], particularly based on the
estrogen, progesterone, HER2 receptor protein expression
in the tumor and on the cancer cell proliferation rate. The
development of methods for gene expression analysis involving
the use of DNA microarrays played a major role in determining
BC molecular subtypes. The use of the classifier based
on the expression of 50 PAM50 genes makes it possible to
clearly distinguish luminal A (LumA), luminal B (LumB), HER2-
enriched (HER2+) molecular subtypes, as well as basal-like or
triple-negative breast cancer (TNBC) [4]. TNBC that comprises
15-20% of all BC cases is characterized by aggressiveness,
high metastasis rate, frequent relapses, and low survival rate
compared to other BC subtypes [5]. Multigene microarray-
based test systems make it possible to obtain prognostic
information that is important for cancer patients, especially
in cases of equivocal predictions made based on the clinical
characteristics and IHC markers. Such systems include
Mammaprint/Blueprint and Prosigna/PAM50, which, in addition

to their predictive value, provide the possibility of division into
molecular subtypes [6]. These systems can be used to define
high or low risk of relapse in female BC patients, however, this
option is not yet available for TNBC and HER2+ molecular
subtypes due to a lack of clinical trials.

Epigenetic changes modulate genome utilization through
histone modification, changes in histone variant composition,
chromatin  remodeling, DNA methylation, positioning
of nucleosomes and non-coding RNAs (expression of
specific miRNAs). For the effect to become manifest, all of
the above mentioned epigenetic alterations act in concert.
DNA methylation is one of the best known factors of gene
expression regulation. It occurs due to covalent modification
of cytosines through the methyl group attachment to the
C5-positions of cytosine residues in the context of CpG
dinucleotides [7]. CpG dinucleotides tend to concentrate
in the GC-rich DNA regions known as CpG islands, many of
which are located in promoter gene regions and long repeat
regions, such as retrotransposable elements or centromere

Table 1. Clinicopathological characteristics and data on the clinical endpoint status of patients with LumAB, TNBC and HER2-enriched BC molecular subtypes taken

from open source (TCGA-BRCA)

Characteristics LumAB TNBC HER2-enriched
Number of samples (%) 555 134 46
Age (median), years 59 54 58
T (%)
T 148 (26.49) 26 (19.4) 12 (26.09)
T2 310 (55.86) 87 (64.93) 28 (60.87)
T3 81 (14.59) 16 (11.94) 3 (6.52)
T4 14 (2.52) 4(2.99) 3 (6.52)
No information 2 (0.36) 1(0.75) -
N (%)
NO 233 (41.98) 78 (58.21) 16 (34.78)
N1 197 (35.5) 41 (30.6) 17 (36.96)
N2 75 (13.51) 11 (8.21) 6 (13.04)
N3 42 (7.57) 4(2.99) 4(8.7)
No information 8 (1.44) - 3 (6.52)
M (%)
MO 431 (77.66) 110 (82.09) 37 (80.43)
M1 6 (1.08) 3(2.24) 1(2.17)
No information 118 (21.26) 21 (15.67) 8(17.39)
Grade (%)
| 98 (17.66) 16 (11.94) 4(8.7)
Il 291 (52.43) 94 (70.15) 28 (60.87)
I 154 (27.75) 19 (14.18) 12 (26.09)
\% 5(0.9) 2(1.49) 1(2.17)
No information 7 (1.26) 3 (2.24) 1(2.17)
Clinical endpoint
Overall survival (%)
No event 490 (88.29) 113 (84.33) 37 (80.43)
Death 65 (11.71) 21 (15.67) 9 (19.57)
Disease-free survival (%)
No relapse 445 (80.18) 102 (76.12) 35 (76.09)
Relapse 39 (7.03) 20 (14.93) 4(8.7)
No information 71 (12.79) 12 (8.96) 7 (15.22)
Progression-free survival (%)
No progression 486 (87.57) 109 (81.34) 38 (82.61)
Progression 69 (12.43) 25 (18.66) 8(17.39)
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Table 2. Total number of signatures and CpG pairs obtained by the LASSO Cox regression method for each survival outcome and BC molecular subtype. For some CpG

pairs it was impossible to define genes these belonged to

Clinical endpoint + molecular ID's of HM450 probes Genes Number of combinations obtained
subtype
©g02287630; cg20417424
905828605 cg00297993
ggfggg‘z‘gg gggggi?gg? SLC30A7: EXTLZ: STEGALNACS;
0S + LumAB cgoos15177 cgos442529 C150rf41; DYNCTHT; MIAS, NIPALS, 32752
+h 9 Q207 431 o HEY2, HK1; DIRC3;, TMEMA41A;
c901821113 SH3BP5L; RFX2
©g04523731 cg11140305
©g22067527
©g22790777 cg23667405
gggg?;gggg ggggggﬁij SLC25A39; BATZ; ZNF417: LRRCSB:
DFS + LumAB 9 9 HSPG2Z; PSMAG: RGOMTD3; 2036
908039281 cg13486627 B0 NGAMT2 ZNF82
904833210 cg27439396 ' g
24347894
913792075 cg08128789
29} gjgéfgj gg?gi;gég LRRC8B; HIST3H2A; ABCCS5: BATZ;
PFS + LUmAB 9 9 SPAGS5; RERE: NIPAL3; HLA-DRBS; 2036
915481636 cg00120948 RGOMTDS
905564086 cg23667405
cg17960080
903512997
907804617 cg12814969 FAM136A; HNRPDL; ENOPHT;
0S + TNBC 914293027 cg15355719 LIN54; DNAJB4; ZNF643; TAPT; 502
917053075 cg19002462 RASGRP2; LDLRAD3
926401512 cg02567719
920154816 cg02927111
cg18701707 cg12484411
920222926 cg02338142 FEZFT; PLIN5, KCNMB2: AASS;
DFS + TNBC 906667406 cg13420273 HDACS; ZFANDT; TRHR. PKNOX1 2036
922512222 cg17804981
cg13745678
901652244 cg02927111
920154816 cg00355315 _ _ )
PFS + TNBC 24083274 cg23390595 ss%zzbgggAg,TgfxglL(,Nfé%cg 502
13420273 cg10170774 ' ;
cg01323371
919236995 cg01564068
o 907351262 cg23409370 GSTM4; BDNF. SLC43AT; PATL2:
OS + HER2-enriched 926290926 cg22043168 DHX8 247
919986472 cg01647795
902327465 cg11261264
o 923302638 cg27252154 BIRCS; EDARADD; TAPBPL; QTRTT;
DFS + HER2-enriched 910660854 cg02796790 PTPRH; SNRPB 247
©g04407660 cg23183932
920662988 cg23409370
923757489 cg03880890 , , . .
PFS + HER2-enriched 904073970 cg22284390 KCNN 15?&?52\ chnggx QH TRSA; 502
927020573 cg00297843 '
cg17258551

repeats. Methylation of cytosine is mediated by the enzyme
class known as methyltransferases (DNMT) [7]. A total of five
DNMT family members have been identified in mammals:
DNMT1, DNMT2, DNMT3a, DNMT3b, and DNMT3L. DNMT3a
and DNMT3b are de novo methyltransferases that interact with
non-methylated CpG dinucleotides. DNMT1 is responsible for
methylation maintenance during replication in S phase. It has
been shown that DNMT3L stimulates de novo methylation that
involves DNMT3a and mediates transcriptional repression with
the help of histone deacetylase 1 (HDACT1) [7]. Aberrant DNA
methylation is associated with a wide range of diseases and
appears to be most marked in malignant tumors [8]. Studies
of recent years show that every epithelial tumor contains about
10-15 genes inactivated by the genome structural changes
and hundreds of genes inactivated by DNA hypermethylation.
This demonstrates the importance of this modification for
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tumor development. Total hypomethylation is one more feature
of tumor genomes. This is a genome-wide hypomethylation
that results mainly from the loss of methylation at repetitive
elements and leads to genome instability and chromosomal
rearrangement [8]. The increased promoter methylation in the
tumor suppressor genes suppressing various mechanisms
of tumor progression, that resuts in epigenetic silencing and
reversible inactivation of these genes, plays an important role in
BC pathogenesis [8]. Identification of the tumor-specific aberrant
DNA methylation patterns can be useful for early diagnosis of
cancer, differential diagnosis of malignant neoplasms, in the
capacity of prognostic and predictive markers [9]. The study of
specific DNA methylation patterns identified by genome-wide
analysis makes an important contribution to understanding of
BC pathogenesis [10]. As noted above, each cancer type is
divided into subtypes. There are genomic patterns, including
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Table 3. The best signature, number of probes in the signature, values of cvAUC (cross-validated area under curve; the average area under curve obtained at all stages
of cross-validation), sensitivity, specificity and accuracy for each survival outcome and BC molecular subtype

Clinical endpoint + molecular Number of
sEbt o probes in the Genes in the combination cvAUC Sensitivity Specificity Accuracy
P combination
SLC30A7, EXTL2, C150rf41,
MIA3, NIPAL3, HEY2, HK1,
0S + LumAB 12 DIRGS, TMEM41A, SHIBPSL 0.797 0.829 0.629 0.805
RFX2
SLC25A39, BAT2, ZNF417,
DFS + LumAB 6 PSVAG, FEIMTDS, ZNF8o7 0.831 0.838 0.716 0.828
ABCCS5, NIPAL3, HLA-DRBS,
PFS + LumAB 9 RGOMTD3, HIST3H2A, RERE, 0.761 0.875 0.562 0.836
SPAGS5, BAT2, cq13447284
0S + TNBC 5 090355%7/" égV?N%‘?;GRP 2 0.969 0.864 0.939 0.876
DFS + TNBC 5 P KNﬁ,)g(,Z\bgCZ%ngggD ! 0.834 0.902 0.673 0.865
PFS + TNBC 6 bP gg%;goézgg;; 5&2)( £ 0.844 0.952 0.674 0.900
o GSTMA4 (TSS200), GSTMA4
0S + HER2-enriched 3 Body), 026200926 0.898 1 0.883 0.977
DFS + HER2-enriched 2 BIRC5,cq10660854 1 1 1 1
PFS + HER2-enriched 4 SLC45A1, B}?CDA;I'V‘;QO"” 7843, 1 0.947 1 0.956

epigenetic ones, that are typical for these subtypes. Thus, it is
necessary to perform specific genome-wide DNA methylation
profiling in cancer patients, along with the conventional
assessment of the promoter hypermethylation point events in
certain genes [11].

Prognosis involves prediction of the possible course
and outcome of cancer. Survival analysis that is based
on mathematical approach to cancer prognosis makes it
possible to predict the likelyhood of staying alive after a certain
time. Because of their biological importance and stability,
DNA methylation markers are an effective prognostic factor
[12]. In one of the studies, the data of the genome-wide DNA
methylation analysis of BC samples from The Cancer Genome
Atlas Breast Cancer (TCGA-BRCA) database were used to
construct a model of seven CpG dinucleotides that made it
possible to clearly distinguish breast tumors of all subtypes
and normal tissues, and to identify six methylation sites that
strongly correlated with overall survival (OS) [13]. The analysis of
methylation data from open sources by LASSO regression and
boosting revealed 29 and 11 CpG dinucleotides associated with
OS, resperctively [14]. The study of data taken from the open
source (TCGA-BRCA) also made it possible to identify three
genes (TDRD10, PRAC2, and TMEM132C), the methylation
status of which had some predictive value, however, this
was true mostly for estrogen receptor-positive breast tumors
[15]. A prognostic model that comprises five genes (TGFBR2,
EIF4EBP1, FOSB, BCL2A1, ADRB2) has been developed for
TNBC based on the data obtained from TCGA-BRCA. The
model is equally well suited for prediction of OS and disease
free survival (DFS) [16].

Research is necessary due to the lack of such signatures
for HER2-enriched subtype and a rather limited number of
signatures for other BC molecular subtypes. The diagnostic
potential of the existing survival prediction models is also
uncertain, that is why we have used a modified algorithm to
search for CpG dinucleotides associated with all available
clinical endpoints found in the TCGA-BRCA database.

The study was aimed to obtain various signatures based
on the open data on DNA methylation in BC from The
Cancer Genome Atlas Breast Cancer for prediction of various

clinical endpoints (overall survival, disease-free survival, and
progression-free survival) for BC molecular subtypes and test
the relationship between the clinicopathological characteristics
and the signatures obtained.

METHODS

The publicly available clinical parameters and the data of the
genome-wide DNA methylation profiling obtained using the
HumanMethylation450 (HM450) hybridization chips (lllumina
Inc.; USA) within the framework of The Cancer Genome Atlas
Breast Cancer (TCGA-BRCA,) project (https://portal.gdc.cancer.
gov/projects/TCGA-BRCA) were acquired and processed
using the TCGAbiolinks software package [17]. Inclusion
criteria for patients to be used for further selection of candidate
CpG pairs were as follows: appropriate BC molecular subtype,
availability of accessible clinicopathological information,
availability of the DNA methylation profiling data obtained using
the lllumina HumanMethylation450 chips. Exclusion criteria: no
data on the time values for clinical endpoints, patient's age,
TNM stage and grade. Then the results obtained using the
patients' FFPE (formalin fixed paraffin-embedded) blocks and
cross-hybridization probes were excluded from the profiling
data matrix.

Selection of CpG pairs assocciated with OS, DFS or
progression-free survival (PFS) was performed by univariate
Cox regression method [18]. Of all the selected CpG pairs,
those subjected to multiple testing adjustment (adjusted value
p < 0.05, Wald test was used) by the false discovery rate (FDR)
method were further analyzed. The LASSO Cox regression [19]
method implemented in the SurvHIDIm software package [20]
was used to select the most stable CpG pairs. Multivariate
Cox regression [21] was used to calculate the CpG-based
signatures and to test the independence between the patients'
clinical parameters and these signatures. The ability to classify
various outcomes was defined by logistic regression method.
Stratification into the high- and low-risk categories was
performed using the median. The cvROC (cross-validated
receiver operative curve) method [22] was used to test the
quality of the models constructed and to plot the ROC curves.
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Fig. 1. cvROC curves (cross-validated receiver operative curve; ROC curve is plotted at every stage of cross-validation, then the resulting curve is constructed) for
the best signatures. The vertical axis shows sensitivity (0-1), the horizontal axis shows specificity (0-1), rows show survival outcomes, columns show BC molecular

subtypes

The best sensitivity and specificity values were defined by
the Youden's index method. The Kaplan—-Meier curves were
constructed using the survminer software package [23]. The
Mantel-Cox test was used to compare two survival curves.
The 10-fold cross-validation method was used throughout all
stages of marker selection and signature calculation. All the
listed above calculations were performed using the R statistical
programming language [24].

RESULTS

The studied TCGA-BRCA data set included the DNA
methylation profile obtained using the HM450 chips and the
clinicopathological characteristics of 735 primary BC samples.
After exclusion of paraffin-embedded samples, there were a
total of 555 LumA+B subtype (LumAB) samples, 134 TN
subtype samples, and 46 HER2-enriched subtype samples
(Table 1). Prior to selection of traits for further analysis, cross-
hybridization probes were excluded from the methylation data
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matrix, so that the number of probes reduced from 485,577 to
456,344, respectively.

The next stage of analysis involved using univariate Cox
regression to search for methylation sites that correlate with the
duration of OS, DFS and PFS in various BC molecular subtypes.
After the initial selection with allowance for the multiple testing
adjusted p-value, the following probes were selected:

— 10,433 probes associated with OS in the LumAB
subtypes, 3214 probes in the TN subtype, 6471 probes in the
HER2-enriched subtype;

— 4419 probes associated with DFS in the LumAB
subtypes, 168 probes in the TN subtype, 483 probes in the
HER2-enriched subtype;

— 2345 probes associated with PFS in the LumAB
subtypes, 43 probes in the TN subtype, 3216 probes in the
HER2-enriched subtype.

LASSO Cox regression was used for each of the listed sets,
allowing for selection of CpG dinucleotides that were most
important for analysis. Different numbers of such CpG pairs



OPUTMHAJIbHOE NCCJIEOOBAHVE | TEHETUKA

Table 4. Multivariate Cox regression results for the best signatures and clinicopathological characteristics. HR — hazard ratio (relative risk), P — responsible for p-val
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were identified during each stage of cross-validation. CpG pairs
found in more than 50% of cross-validation data splits were
selected (Table 2).

To select the combinations of CpG dinucleotides showing
significant correlations with various survival outcomes, we
assessed all possible combinations (signatures) of such CpG
dinucleotides in various BC molecular subtypes. For each
clinical endpoint and BC molecular subtype, cvAUC (cross-
validated area under curve, the average area under curve
at all stages of cross-validation), sensitivity, specificity and
accuracy were defined for various combinations. The first
10 combinations showing high cvAUC values were tested for
independence of the clinicopathological characteristics. The
diagnostic characteristics of these combinations along with
the number of probes and genes belonging to the probes are
provided in Table 3.

The combination of 12 CpG dinucleotides for prediction of
OS in the LUmAB subtype was the largest defined combination,
while the combination of two CpG dinucleotides for prediction
of DFS in the HER2-expressing subtype was the smallest one.
The cvROC (cross-validated receiver operative characteristics:
ROC curve is plotted at every stage of cross-validation, then
the average curve is constructed) curves and the Kaplan-Meier
curves were plotted for each signature to show the diagnostic

potential and estimate the survival function. The LumAB
combinations showed lower cvAUC values (0.76-0.83), while
the combinations for TN and HER2-expressing subtypes
showed high cvAUC values with fewer nember of combinations
(0.83-1) (Fig. 1).

Our combinations are independent of the clinical
characteristics (Table 4). This makes it possible to use the risk
indicators of these clinical endpoints in any group of patients.

The Kaplan—Meier curve analysis revealed a significant (o < 0.05)
decrease in OS, DFS and PFS in the group of patients with high
risk of death, relapse and disease progression compared to
the group of patients with low risk. This was true for all BC
molecular subtypes and all selected combinations (Fig. 2).

DISCUSSION

In this study, we considered the possibility of identifying the
CpG dinucleotide differentially methylated sites to predict
survival outcomes in various BC molecular subtypes using
the methods of survival analysis and DNA methylation data.
The approach to calculation of differential methylation based
on univariate Cox regression is widely used in a variety of
studies. Thus, this method was used for identification of
249,810 and 249,811 probes based on DNA methylation data
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Fig. 2. Kaplan-Meier curves for the best signatures. The horizontal axis shows time (years), the vertical axis shows the likelihood of staying alive (0-1). High risk of
death, progression and relapse is highlited in red, low risk of death, progression and relapse is highlighted in turquoise. Rows show survival outcomes, and columns show

BC molecular subtypes

associated with ovarian cancer and BC, respectively [12], and
for identification of probes based on DNA methylation data
associated with cutaneous melanoma [25].

We have shown that the use of various combinations (2—12
CpG dinucleotides) makes it possible to achieve acceptable
(cvAUC 0.7-0.8), high (0.8-0.9) and very high quality (0.9-1)
of classification into high and low risk of death, relapse and
progression. During the study we have identified 47 probes/
genes (SLC30A7, EXTL2, C150rf41, MIAS, NIPAL3, HEY2,
HK1, DIRC3, TMEMA41A, SH3BP5L, RFX2, SLC25A39, BAT2,
ZNF417, PSMA6, RGOMTD3, ZNF827, ABCC5, HLA-DRB5,
HIST3H2A, RERE, SPAGS, cg13447284, cg03512997, LIN54,
RASGRP2, LDLRAD3, ZNF643, PKNOX1, KCNMB2, ZFAND1,
HDACY, c¢g13745678, DPPA5, ¢g02927111, PKNOXT,
SSU72, CADPS2, PEX5L, GSTM4, cg26290926, BIRCS,
cg10660854, SLC43A1, BOD1, cg00297843, KCNNT), the
methylation of which is associated with OS, DFS and PFS.
We failed to define which genes seven probes (cg13447284,
cg03512997, ¢g13745678, ¢g02927111, ¢g26290926,
cg10660854, cg00297843) belonged to. Five of these probes
(BIRC5, PKNOX1, SPAGS5, HDAC9, PSMAG6) have been
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previously reported in scientific literature as molecular markers
of BC patients' survival based on the data of gene expression
quantification [26-31].

It is noteworthy that in our study we found the same number
of CpG dinucleotides (HM450 probes) for prediction of OS and
DFS (based on five probes) as other researchers [16], but the
probes varied according to genes they belonged to. According
to our data, the signature for prediction of PFS consists of six
probes; no PFS signiture was calculated during the study [16].
Other researchers suggest using invidual markers of promoter
hypermethylation in seven genes (RASSF1, BRCA1, PITX2,
RARB, PGR, CDH1, and PCDH10) for prediction of OS and
DFS outcome in patients with ER+ BC, they also consider
using the panel of three genes (GSTP1, RASSF1, and RARB)
for prediction of OS based on the literature data analysis
(systematic review of the reports) [26], while we have used a
strategy of developing panels of six, nine and 12 methylation
markers based on the marker diagnostic potential defined by
statistical analysis of the experimental data set.

Among genes included in our combinations, attention is
drawn to BIRC5 (encodes baculoviral IAP repeat-containing



OPUTMHAJIbHOE NCCJIEOOBAHVE | TEHETUKA

protein 5) that is overexpressed in the majority of tumors,
including BC, and is associated with poorer prognosis of overall,
disease-free and progression-free survival. It has been shown
that the use of taxane chemotherapy drugs may increase the
expression of this gene [27]. PKNOX1 (gene of the short arm
of chromosome 21 that encodes eponymous protein and plays
an important role in embryogenesis) is a tumor suppressor
gene, while the increased expression of this gene is associated
with poorer survival rate [28]. The increased expression of
SPAG5 (encodes protein associated with the mitotic spindle
apparatus), associated with poorer prognosis of OS, DFS and
PFS only in estrogen receptor-positive (ER*) breast tumors,
is also a prognostic factor [29], which is confirmed by our
study. The findings of the study that involved ER* BC samples
show that the increased expression of HDAC9 epigenetic
enzyme (encodes protein, histone deacetylase 9) in tumors is
associated with the poorer prognosis of DFS [30]. Our study
shows the association between the abnormal methylation
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