ALGORITHM OF SEGMENTATION OF OCT MACULAR IMAGES TO ANALYZE THE RESULTS IN PATIENTS WITH AGE-RELATED MACULAR DEGENERATION

Ibragimova RR1,2(✉), Gilmanov II, Lopukhova EA1, Lakman IA1,2, Bilyalov AR1, Mukhamadeev TR1,3, Kutlyurarov RV1, Idrisova GM1,3

1 Bashkir State Medical University, Ufa, Russia
2 Ufa State Aviation Technical University, Ufa, Russia
3 Optimedservice, Ufa, Russia

Age-related macular degeneration (AMD) is one of the main causes of loss of sight and hypovision in people over working age. Results of optical coherence tomography (OCT) are essential for diagnostics of the disease. Developing the recommendation system to analyze OCT images will reduce the time to process visual data and decrease the probability of errors while working as a doctor. The purpose of the study was to develop an algorithm of segmentation to analyze the results of macular OCT in patients with AMD. It allows to provide a correct prediction of an AMD stage based on the form of discovered pathologies. A program has been developed in the Python programming language using the Pytorch and Tensorflow libraries. Its quality was estimated using OCT macular images of 51 patients with early, intermediate, late AMD. A segmentation algorithm of OCT images was developed based on convolutional neural network. UNet network was selected as architecture of high-accuracy neural network. The neural net is trained on macular OCT images of 125 patients (197 eyes). The author algorithm displayed 98.1% of properly segmented areas on OCT images, which are the most essential for diagnostics and determination of an AMD stage. Weighted sensitivity and specificity of AMD stage classifier amounted to 83.8% and 84.9% respectively. The developed algorithm is promising as a recommendation system that implements the AMD classification based on data that promote taking decisions regarding the treatment strategy.

Keywords: artificial intelligence, neural network, age-related macular degeneration, optical coherent tomography, machine learning algorithm

DOI: 10.24075/vsgmu.2022.062

ALГОРИТМ СЕГМЕНТАЦИИ ОКТ-ИЗОБРАЖЕНИЙ МАКУЛЫ ДЛЯ АНАЛИЗА ПАЦИЕНТОВ С ВОЗРАСТНОЙ МАКУЛЯРНОЙ ДЕГЕНЕРАЦИЕЙ

Р. Р. Ибрагимова, И. И. Гильманов, Е. А. Лопухова, И. А. Лакман, А. Р. Билялов, Т. Р. Мухамадиев, Г. М. Идрисова

1 Башкортостанский государственный медицинский университет, Уфа, Россия
2 Уфимский государственный авиационный технический университет, Уфа, Россия
3 Закрытое акционерное общество "Оптимедсервис", Уфа, Россия

Одной из основных причин слепоты и слабовидения у лиц старшего трудоспособного возраста является возрастная макулярная дегенерация (ВМД), для диагностики которой крайне важны результаты оптической когерентной томографии (ОКТ). Создание рекомендательной системы для анализа ОКТ-снимков позволит сократить время на обработку визуальной информации и снизить вероятность ошибок в процессе работы врача. Целью исследования было разработать алгоритм сегментации для анализа данных ОКТ макулы пациентов с ВМД, позволяющий, основываясь на форме выделяемых патологий, корректно предсказывать стадию развития ВМД. Разработана программа на языке программирования Python с использованием библиотеки PyTorch и Tensorflow. Качество работы программы оценили на ОКТ-изображениях макулы 51 пациента с ВМД данной, промежуточной и поздней стадии. Разработан алгоритм сегментации ОКТ-снимков, основанный на сверточной нейронной сети. В качестве архитектуры сверточной нейронной сети была выбрана сеть UNet. Нейронная сеть обучена на ОКТ-снимках макулы 125 пациентов (197 глаз). Авторский алгоритм продемонстрировал 98.1% верно сегментированных областей на ОКТ-изображениях макулы 51 пациента с ВМД данной, промежуточной и поздней стадией. Разработан алгоритм сегментации ОКТ-снимков, основанный на сверточной нейронной сети. В качестве архитектуры сверточной нейронной сети была выбрана сеть UNet. Нейронная сеть обучена на ОКТ-снимках макулы 125 пациентов (197 глаз). Авторский алгоритм продемонстрировал 98.1% верно сегментированных областей на ОКТ-изображениях макулы 51 пациента с ВМД данной, промежуточной и поздней стадией. Разработан алгоритм сегментации ОКТ-снимков, основанный на сверточной нейронной сети. В качестве архитектуры сверточной нейронной сети была выбрана сеть UNet. Нейронная сеть обучена на ОКТ-снимках макулы 125 пациентов (197 глаз). Авторский алгоритм продемонстрировал 98.1% верно сегментированных областей на ОКТ-изображениях макулы 51 пациента с ВМД данной, промежуточной и поздней стадией. Разработан алгоритм сегментации ОКТ-снимков, основанный на сверточной нейронной сети. В качестве архитектуры сверточной нейронной сети была выбрана сеть UNet. Нейронная сеть обучена на ОКТ-снимках макулы 125 пациентов (197 глаз). Авторский алгоритм продемонстрировал 98.1% верно сегментированных областей на ОКТ-изображениях макулы 51 пациента с ВМД данной, промежуточной и поздней стадией.

Ключевые слова: искусственный интеллект, нейронная сеть, возрастная макулярная дегенерация, оптическая когерентная томография, алгоритм машинного обучения

FINANCING: Исследование частично выполнено в рамках проекта, поддержанного субсидией в области науки из бюджета Республики Башкортостан для государственных научных исследований, проводимых под руководством ведущих ученых (НСЦ «Сенсорные системы на основе устройств интегральной фотоники») в рамках выполнения работ по государственному заданию Минобрнауки России по ФГБОУ ВО «УГАТУ» (код научной темы #ФГБОУ ВО-УГАТУ-2021-0013, соглашение № 075-03-2021-014) в молодежной научно-исследовательской лаборатории НСЦ «Сенсорные системы на основе устройств интегральной фотоники».

Funding statement: This study was partially conducted as part of the State Assignment of the Ministry of Education and Science of the Russian Federation for the Ufa State Aviation Technical University (code of scientific assignment #FEUE-2021-0013, agreement № 075-03-2021-014) at the scientific research laboratory named “Sensor systems based on applications of integrated photonics” (sections “Materials and methods”, “Study results”, “Discussion of results”) and as part of the project backed by subsidies in the area of science taken from the budget of the Republic of Bashkortostan to ensure state support of scientific research conducted under the guidance of the leading scientists (HQL-PFM-2021, agreement with the Ufa State Aviation Technical University (Introduction section).

Author contribution: Ibragimova RR — review of literature, data acquisition and analysis, writing an article; Gilmanov II — development of software, searching a database, testing the existing code components; Lopukhova EA — development of software, writing an article, data acquisition and analysis; Lakman IA, Mukhamadeev TR, Kutlyurarov RV — study concept and design, scientific editing; Bilyalov AR — scientific editing; Idrisova GM — data analysis, scientific editing.

Compliance with ethical standards: The study was performed in accordance with the principles of Declaration of Helsinki; all patients signed voluntary informed consent to OCT.

Correspondence should be addressed: Rada R. Ibragimova
Lenina, d. 3, Ufa, 450008, Russia; ibragimova.rada2016@yandex.ru

Received: 03.11.2022 **Accepted:** 03.12.2022 **Published online:** 27.12.2022

DOI: 10.24075/vsgmu.2022.062

Статья принята к печати: 03.12.2022 **Статья опубликована онлайн:** 27.12.2022

Статья получена: 03.11.2022 **Статья принята к печати:** 03.12.2022 **Опубликована онлайн:** 27.12.2022

DOI: 10.24075/vsgmu.2022.062
Age-related macular degeneration (AMD) is one of the main causes of loss of sight and hypovision in people aged 50 and over [1–3]. An annual growth of patients with this pathology is noted due to an increased expectation of life and upgrading the methods of diagnostics [4, 5]. Thus, based on prognosis of the World Health Organization, a number of people with AMD will be increased by 1.2 times from 2020 to 2030 (from 195.6 to 243.3 million of people) [6].

There exist various classifications of AMD: we differentiate between dry (non-exudative and atrophic in the late stage) and wet (exudative or neovascular) forms of AMD [7, 8]. According to the Age-Related Eye Disease Study (AREDS), an early, intermediate and late stages of age-related macular degeneration have been identified [9]. Based on the literature data, in 10–20% of cases the non-exudative form of disease is transformed into the exudative one; in other cases, the course is slowly progressing and results in a geographic atrophy [10–12]. Specific treatment of dry AMD is currently lacking, and the emphasis is on prevention measures [13]. Wet AMD leads to rapid and irreversible loss of central vision. Intravitreal injections of vascular endothelial growth factor (VEGF) inhibitors improve vision and reduce the possibility of blindness in wet AMD [14]. However, treatment success depends on many factors, one of which being modern diagnostics of the disease [3]. Optical coherence tomography (OCT) acquired the most widespread use both in clinical trials, and in real practice as a means of diagnostics and monitoring of patients with AMD [15–16]. It is highly informative, contactless and allows to estimate the architecture of eye structures and retina, in particular, in real time [17]. A growing number of patients with this pathology is accompanied by an increased need in OCT studies, improved capacity of medical institutions and improved quality of the methods.

Analysis and interpretation of large amounts of data is one of the issues [18, 19]. It can be solved using artificial intelligence (AI). AI intelligence becomes a perspective trend in diagnostics of ophthalmological diseases [20]. Thus, machine learning can be used to detect peculiarities of retinal tissue structure to evaluate the changes in it [21], detect vascular plexuses [22] and such retinal lesions as intraretinal cysts or subretinal fluid [23]. Methods of deep learning have recently become popular in the sphere of computer vision and are now included into the area of retinal image analysis. The methods of detecting retinal disease based on isolated biomarkers have gained special recognition; it enables close imitation of visual analysis by an expert and makes verification of a classifier easier [24–30].

Latest studies in the area of integration of recommendation systems in ophthalmology reveal brilliant results regarding less time spent on diagnostics and influence of a human factor on the process of doctors’ working [31, 32]. These systems were operated based on the intellectual algorithms similar to previously available ones, which proves relevance of the search and development of new algorithms that could be used to determine the signs of AMD of various stages on OCT images with high sensitivity and specificity.

The purpose of the research is to develop an algorithm of segmentation to analyze macular OCT data in patients with AMD, that enables proper prediction of an AMD stage based on the form of extracted pathologies.

METHODS

To solve the set task, supervised learning was used. During this training, the intellectual algorithm compares incoming and expert-labeled data increasing the generalization ability for unknown examples. At the stage of formation of three samples (training, validation and test ones), it was decided to use the database obtained during a standard ophthalmological examination and macular OCT using Avanti XR (Optovue; USA) and REVO NX (Optopolt; Poland) at Optimed Center for Laser Eye Surgery (Ufa, Russia). Direct formation of a data set made it possible to regulate the parameters of the ratio of classes (stages) of the disease, gender and age-related distribution of patients and concomitant diseases, and a number of produced biomarkers, resulting in analysis of working algorithm outcomes in the presence of formerly known peculiarities of a set of OCT images. Incoming data included OCT macular images of 125 patients (197 eyes) with 89 women and 36 men aged mean age of 74.88 years (40–97). Inclusion criteria: patients with early (32%), intermediate (26%) and late (42%) stages AMD with sufficient transparency of optical media. Exclusion criteria: presence of diabetic retinopathy, retinal vessel occlusion; pachychoroidal diseases; pathology of vitreomacular interface; and myopic choroidal neovascularization. The obtained set of OCT images consisted of training, validation and testing samples that account for 80, 10 and 10% respectively. Python programming language was a tool to develop an algorithm of image classification and formatting using TensorFlow and Pytorch libraries. Predictors of AMD stages were searched using the convolutional neural network segmenting the eye pathology. The operation principle of this neural networks was based on multi-layered successive convolution of an image with filters, whereas weight coefficients are selected while training an algorithm. These filters are intended to mark various image-located forms and textures in accordance with the principle of cerebral cortex operation having small parts of cells sensitive to certain areas of the field of vision. UNet initiated for segmentation purposes, was selected as architecture of a convolutional neural network. This architecture implements not only a slow increase of numerous signs (a tensor) that characterize the incoming image using four layers of convolution with filters and compression in encoder. It also preserves data related to their localization on the image by adhesion to parallel layers of convolution and use of operations reverse to file compression in a decoder.

ReLu was used as a function of activation. It provided qualitative training of a model using a relatively low amount of incoming data. OpenCV library was selected to ensure the best indicators of image processing and noise clearance.

To solve the issue of overfitting, several approaches were reviewed. Transfer learning, when the applied network is previously educated using a large set of data, is a popular method in this context [33–35]. However, it should be taken into account that the biomarkers marked on an OCT image will have little correlation with entities produced by networks trained using common databases such as ImageNet. This can make the method less effective [36, 37]. Using methods of attention concentration is another approach that reduces the probability of network overfitting. For this, a block of attention was added to the neural network structure following every convolution layer. This block included searching of key points of the outcome of the layer process and increase of nearby values of network-processed tensor elements, on one hand, and a method of searching the adaptive limit value of tensor elements, on the other hand.

Classification based on segmented data was done by calculating the area of the largest pathologies of the same nature. The limit values were determined taking into consideration clinical signs of AMD by the size of concomitant pathologies [9].
It was estimated whether an AMD stage was classified properly based on the automatic recognition of OCT images and analysis of the nine-field coupling matrix, which is a matrix that provides correspondence between the actual and predicted AMD stages (early, intermediate, late). Three four-field coupling matrices developed using the principle of prediction of one AMD stages only were obtained. Thus, values of specificity and sensitivity for every AMD stages were calculated for every matrix. Sensitivity means a percentage of properly predicted cases of a certain stages of AMD, whereas specificity is a percentage of properly predicted cases not related to the AMD stages.

Weighted sensitivity (Se_w) and specificity (Sp_w) of the entire classification algorithm were calculated using definite values

$$Se_w = \frac{Se_1 n_1 + Se_2 n_2 + Se_3 n_3}{n}$$

$$Sp_w = \frac{Sp_1 n_1 + Sp_2 n_2 + Sp_3 n_3}{n},$$

where Se_{i}, Sp_{i}, mean sensitivity and specificity of early AMD recognition; Se_{i}, Sp_{i}, denote sensitivity and specificity of late AMD recognition; Se_{i}, Sp_{i}, mean sensitivity and specificity of intermediate AMD recognition; n_i means a number of cases with early AMD; n_i means a number of cases with late AMD; n_i means a number of cases with intermediate AMD, where $n = n_1 + n_2 + n_3$.

RESULTS

To develop a recommendation system determining AMD stages, an approach imitating a visual analysis made by an expert was selected. When it is used, position and form of disease pathologies can be found on an OCT image and they can be compared with a previous diagnostic experience. At the stage of detecting pathologies, the key issue consists in transfer of an expert’s experience in its differentiation with an intellectual algorithm. As use of methods of deep learning displays its effectiveness and immunity to the variety of incoming information only in the presence of a sufficient scope of the training samples, which is proportional to the algorithm complexity [38], a set of marked OCT images is required. Its generation is a resource-intensive task.

To avoid the limitation in the structure of UNet segmenting neural network, it was decided to include a block of additional treatment of a set of signs from an output of the convolution layer. This is how data about pathology contours were preserved, which could be reduced to the neural network attention concentration. The presented approach enables to decrease the complexity of the applied neural network algorithm by reducing a number of educated values while preserving exactness in a training sample. Effectiveness of the attention concentration approach was estimated by comparing the exact determination of segmented abnormal area borders using test data and analysis of class activation maps of abnormal retinal parts of UNet coder that visualizes the key areas of the images used for segmentation of this predictor.

During training of the neural network with a set of data formed by the authors with no involvement of the attention concentration block into UNet, the segmentation results amounted to 58.7% of properly segmented abnormal areas. The class activation maps presented in Fig. 1A, display little concentration of attention on AMD signs. This is how low accuracy of pathology borderlines can be explained.

When selecting an algorithm of the attention concentration block it has been taken into account that retinal layers on OCT images have a properly marked difference in shades of gray. Deformation of pigmented epithelium and neuroepithelial edema are clearly seen. These shades, considering their difference in size during different stages of the disease, can be revealed by finding scale-invariant key points with Scale-Invariant Feature Transform (SIFT) [39]. They denote edges and deformity margins on the image using the method of searching the adaptive limit value (SALV). The method proved to be effective while detecting pathologies [40].

The SIFT approach with a fixed lower threshold of key point scope, equal to the minimal sizes of drusen found in early stages of AMD [9] enabled to improve exactness of abnormal...
The machine learning algorithm was developed to segment the AMD pathologies based on OCT-images with attention concentration. A physician can apply the obtained results to focus on the most important for diagnostics areas or as part of the recommendation system of detection and determination of an AMD stage that has to be developed in subsequent studies. The algorithm displayed its perspectives regarding organizational issues associated with AMD diagnostics, less load on ophthalmologists, and effective recognition of AMD on OCT images with 98.1% of properly segmented abnormal areas.

Table. Values of specificity and sensitivity for every stage

<table>
<thead>
<tr>
<th>Quality metrics</th>
<th>Late</th>
<th>Early</th>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity Se</td>
<td>0.929</td>
<td>0.921</td>
<td>0.58</td>
</tr>
<tr>
<td>Specificity Sp</td>
<td>0.823</td>
<td>0.769</td>
<td>0.993</td>
</tr>
</tbody>
</table>
References

Литература

Bogunović Chakravarty A, Sivaswamy J. A supervised joint multi-
Esmaeili M, Dehnavi AM, Rabbani H, Hajizadeh F. Three-
Hu Z, Niemeijer M, Abramoff MD, Garvin MK. Multimodal retinal
Esmaeili M, Dehnavi AM, Rabbani H, Hajizadeh F. Three-

24. Chakravarty A, Sivaswamy J. A supervised joint multi-

22. Hu Z, Niemeijer M, Abramoff MD, Garvin MK. Multimodal retinal

23. Esmaeili M, Dehnavi AM, Rabbani H, Hajizadeh F. Three-
dimensional segmentation of retinal cysts from spectral-domain
optical coherence tomography images by the use of three-
dimensional curvelet based K-SVD. Journal of medical signals

