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ИСТОЧНИКИ И ЗНАЧИМОСТЬ ВАРИАТИВНОСТИ ПОТЕНЦИАЛОВ МОЗГА ЧЕЛОВЕКА 
В ИНТЕРФЕЙСЕ МОЗГ–КОМПЬЮТЕР

В интерфейсе мозг–компьютер на волне P300 (ИМК-P300) выбор команд пользователя возможен за счет фокусирования им внимания на внешнем 

стимуле-команде и выделении из ЭЭГ реакции к этому стимулу — в виде компонентов потенциалов, связанных с событиями (ПСС). Для получения 

сигнала ПСС стимулы необходимо многократно повторять, однако ввиду существующей вариативности латентности реакций на отдельные стимулы 

усредненные ПСС могут давать искаженное представление о характере таких реакций, а также снижать точность работы интерфейса. Целью работы 

было разработать эффективный способ выявления эффектов вариативности латентности компонентов ПСС и учета этих эффектов в ИМК-P300, и 

выявить возможное влияние психофизиологических факторов на характер вариативности ПСС. Для изучения механизмов вариативности мы провели 

ИМК-исследование на 19 здоровых испытуемых, где использовали выделение и коррекцию латентности в пространственных компонентах N1 и P300, 

играющих ключевую роль в классификации команд в ИМК-P300. Этот подход обеспечил более высокую точность по сравнению с использованием 

обычных отведений ЭЭГ, при этом наибольший рост в 10% наблюдался при минимальном числе повторов стимулов. Также модификации интерфейса, 

позволяющие обеспечить более высокий уровень внимания пользователя к задаче и более четкую фиксацию взгляда на целевых объектах, 

способствовали повышению амплитуд компонентов ПСС посредством снижения вариативности реакций на единичные стимулы. Полученные результаты 

подчеркивают важную роль процессов вариативности компонентов ПСС и дают эффективный инструмент для их научного изучения, а также для 

разработки перспективных систем ИМК.
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SOURCES AND IMPACT OF HUMAN BRAIN POTENTIAL VARIABILITY IN THE BRAIN-COMPUTER 
INTERFACE 

In the brain-computer interface based on the P300 wave (P300 BCI), the selection of the command by the user becomes possible due to focusing the user's 

attention on the external stimulus/command and extraction of the response to this stimulus in the form of the event-related potential (ERP) components from EEG. 

To obtain the ERP signal, stimuli should be repeated many times, however, in view of the existing variability in latency of the response to certain stimuli, the averaged 

ERPs may give a distorted view of the nature of such responses and reduce accuracy of the interface. The study was aimed to develop an effective method for 

identification of the effects of the ERP components' latency variability and for accounting these effects in the P300 BCI, as well as to identify the possible impact 

of psychophysiological factors on the nature of ERP variability. We have conducted a BCI-based study of 19 healthy subjects involving extraction and adjustment 

of latency in the N1 and P300 spatial components, which play a key role in the command classification in the P300 BCI, to explore the mechanisms underlying 

variability. Such an approach ensured higher accuracy compared to the use of conventional EEG leads, and the highest increase of 10% was observed when using 

the minimum number of the stimulus repetitions. Furthermore, modifications of the interface allowing one to ensure a higher level of the user's focus on the task and 

a more accurate visual fixation on the target objects contributed to the increase in the amplitude of the ERP components  by reducing variability of the responses 

to single stimuli. The findings emphasize the important role of the processes underlying the ERP components' variability and provide an effective tool for scientific 

exploration of such processes and the development of advanced BCI systems.
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Brain-computer interfaces (BCI) make it possible to directly 
translate brain activity into commands to control computer or 
any other device without involving muscles and nerves, only 
via analysis of the user's electroencephalogram (EEG) [1]. The 
concept of BCI, proposed and developed many years ago, has 
become an interdisciplinary technology, the primary purpose of 
which is supporting people with severe speech and movement 
disorders [2], along with the use as a tool for instrumental 
diagnosis or cognitive training [3–5]. 

BCI technologies ofter involve the use of event-related 
potentials (ERPs) [6]. One is the most widely used and well-
proven systems is referred to as P300 BCI, since it is based 
on the analysis of the P300 component related to attention 
[7, 8]. The user of such interface usually mentally counts the 
number of flashes of the character or other command symbol 
of interest. The ERPs elicited to flashing of this (target) object 
are distinguished from ERPs elicited to flashing of all other 
(non-target) symbols by the presence of the P300 component 
[9]. The BCI algorithm recognizes the target symbol (command) 
by this feature and the presence of other components (primarily 
N1) in the ERP [10, 11].

The P300 BCI systems are in demand for communication: 
during typewriting or step-by-step control of certain device [12]. 
However, the main disadvantages of those include the need 
for repetition of stimuli aimed at accumulating ERP responses 
with the least error when the BCI user has to focus on the 
task for a long time. Furthermore, despite the assumption of 
similarity of the brain responses to the repeated stimuli, there is 
some temporal variability of certain responses relative to stimuli 
[13, 14]. This is a well-known neurophysiological phenomenon 
that generally reflects a number of natural brain processes at 
different levels, from cellular to the neural network level, and 
is also determined by fluctuation in the processes underlying 
perception of external stimuli [15].

It is known that such variability can affect the shape of 
the resulting averaged ERPs, including reducing the peak 
amplitude of certain components [16]. Lack of accounting of 
the variability effects may negatively affect the effectiveness of 
the P300 BCI based on the ERP extraction method, thereby 
reducing accuracy of the target command recognition [17, 18].

In general, changes in the ERP variability are considered 
to be associated with fatigue, increased cognitive load, 
complication of the user's task [15, 19], as well as conditions 
characterized by reduced attention, such as ADHD and 
autism [20, 21]. However, the factors affecting ERP variability 
in terms of P300 BCI were never systematically studied. 
Meanwhile, identification of the BCI operation modes having 
a beneficial or negative effect on ERPs and the command 
classification accuracy would make it possible to develop 
more effective systems capable of ensuring more reliable 
control, especially when it comes to potential users with 
reduced attention.

It also seems appropriate to consider ERP variability in the 
P300 BCI by modifying the command classification algorithms. 
This can be particularly important when a relatively small 
number of stimuli is accumulated in the interface, and the 
effects of variability may not be compensated by the number 
of averaging procedures. Given the ERP components' different 
contributions to classification along with variation in their 
topography among various users [22], extracting independent 
spatial components to analyze and consider their variability 
separately can be a more effective approach.

The study was aimed to identify possible factors of the 
stimulus environment and P300 BCI operation modes affecting 
ERP variability, as well as to develop and test more effective 

methods for independent detection of variability of individual 
ERP components during classification.

METHODS

The study involved 19 healthy subjects (5 males and 
14 females) aged 18–23. Inclusion criteria: healthy male 
and female volunteers aged 18–35. Exclusion criteria: 
diagnosed neurological/mental disorder, episodes of seizures 
or diagnosed status epilepticus.

During the experiment the subject sat in a chair in front of 
the monitor on which a standard P300 BCI matrix sized 6 × 6 
with letters of Russian alphabet and numbers was presented. 
The angular dimensions of the matrix were 18° × 18°, the cell 
size was 1.7°, and the cell spacing was 1.1°. The background 
of the screen and cells was black (RGB 0,0,0), while cell frames 
and characters within the cells were grey (RGB 89,90,97). 
Stimuli were represented by random flashes (the background 
color changed from black to grey, and the color of characters 
changed from grey to black) of rows and columns in the matrix. 
The duration of stimulus and the interstimulus interval were 97 
and 48.5 ms, respectively (16 and 8 frames for the refresh rate 
of 165 Hz). Stimulation involved using the stimulus sequences, 
each sequence included presentation of all 12 stimuli available 
in the matrix (six rows and six columns). 

A separate experimental mode included 15 blocks, one cell 
of the matrix per block was designated as a target cell (it was 
marked by repeated wink at the start of the block). Five stimulus 
sequences per block were presented, which corresponded to 
60 stimuli (10 target stimuli and 50 non-target ones). Thus, each 
mode included 150 target stimuli and 750 non-target ones.

Several modes distinguished by parameters of the stimulus 
environment and the subject's task were used to study the 
impact of various factors on the ERP variability. In the passive 
attention mode the subject was not supposed to count flashes 
of the target stimulus as in the P300 BCI, he/she simply fixed 
his/her gaze on the target cell. The task was complicated by 
using the mode involving mixing-up letters: the characters in 
all cells of the matrix randomly changed their places with each 
target flash. The subjects were asked to count not only all 
target flashes, but the number of consonants in the target 
cell when the character changed. To make it easier to fix 
gaze on the cell and reduce the effects of distractor in the 
modes involving the use of half-empty matrix, the characters 
were not made permanently visible, these appeared only with 
flashes (Fig. 1).

The modes and brief instructions for the subject were as 
follows:

1) ordinary matrix, passive attention (“just look at the target 
cell”);

2) ordinary matrix, active attention (“count the number of 
flashes of the target cell”);

3) half-empty matrix, active attention (“count the number of 
flashes of the target cell”);

4) half-empty matrix, mixing up, active attention (“count the 
number of flashes of the target cell”);

5) half-empty matrix, mixing up, cognitive load (“count the 
number of consonants in the target cell”);

6) ordinary matrix, mixing up, active attention: (“count the 
number of flashes of the target cell”);

7) ordinary matrix, mixing up, cognitive load (“count the 
number of consonants in the target cell”).

All modes alternated to generate a pseudo-random 
sequence, except for the passive attention mode that was 
always the first due to special instruction.
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Fig. 1. The stimulus matrix P300 BCI used in the study. The matrix was located in the center of the screen on the black background. “Ordinary matrix” is on the left, 
“half-empty matrix” is on the right

Fig. 2. The extracted spatial components N1 and P300. The figure above shows topography of the spatial filter patterns. The figure below shows components N1 and 
P300 averaged across all subjects. Vertical axis — normalized amplitude in arbitrary units; horizontal axis — time (s). The vertical dotted line (0 s) corresponds to the 
stimulus onset. N = 19 subjects
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EEG was recorded with 30 scalp electrodes (Fp1, Fp2, 
F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, 
CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO7, POz, PO8, 
O1, O2) and a common reference electrode TP9 + TP10 using 
the NVX52 amplifier (MCS, Zelenograd; Russia). The sampling 
frequency was 1000 Hz. A miniature photosensor mounted 
in the upper left corner of the screen was used to ensure 
EEG synchronization with the flashes. Signal recording and 
management of experimental procedure were implemented 
in the original Resonance programming environment written in 
C++ (http://resonance.bcilab.net/documentation).

EEG signal processing and classification were performed 
in MATLAB 9.13 (R2022b) (MathWorks; USA). The EEG signal 
was band-pass filtered within the 1–10 Hz range using a FIR 
filter without a phase shift. Then ocular artifacts were removed 
by independent component analysis (ICA). After that the 
continuous signal was split into epochs from –400 to 1200 ms 
relative to the stimulus onset.

The next phase of analysis involved acquisition of spatial 
filters to extract the components of interest (N1 and P300) from 
the multichannel EEG signal. For that the epochs in the vicinity of 
individual ERP peaks were extracted in each subject, after that 
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Table 1. The average amplitudes of the N1 and P300 components in all modes when using the standard averaging method (no latency correction) and when averaging 
the epochs adjusted to latency of the appropriate component. The mean and standard error of the mean are provided. N = 19 subjects

Component Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

Amplitude with no latency correction, AU

N1 –1.17 ± 0.11 –1.38 ± 0.08 –1.53 ± 0.09 –1.50 ± 0.08 –1.81 ± 0.09 –1.29 ± 0.09 –1.67 ± 0.11

P300 0.92 ± 0.07 1 ± 0.06 0.94 ± 0.07 0.86 ± 0.06 1.07 ± 0.08 0.89 ± 0.06 1.05 ± 0.05

Amplitude with latency correction, AU

N1 –1.50 ± 0.09 –1.67 ± 0.08 –1.81 ± 0.07 –1.77 ± 0.07 –2.05 ± 0.09 –1.59 ± 0.07 –1.93 ± 0.09

P300 1.47 ± 0.06 1.59 ± 0.04 1.52 ± 0.06 1.46 ± 0.04 1.62 ± 0.07 1.53 ± 0.04 1.67 ± 0.04

Table 2. The average absolute latencies and the average indicators of their variability (MAD) for the N1 and P300 components in all modes. The mean and standard 
error of the mean are provided. N = 19 subjects

Component Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

Latency, ms

N1 187 ± 3.25 187 ± 2.6 184 ± 2.3 185 ± 2.2 185 ± 2.1 191 ± 2.6 191 ± 2.7

P300 323 ± 10.5 320 ± 9.3 303 ± 10.6 302 ± 10.4 305 ± 11.6 316 ± 10.3 325 ± 10.8

Mean absolute deviation (MAD) of latency, ms

N1 21.1 ± 1.5 18.9 ± 1.4 16.3 ± 1.2 18.0 ± 1.1 15.1 ± 0.8 19.2 ± 1.6 17.5 ± 1.5

P300 42.5 ± 2.2 41.3 ± 2.2 43.2 ± 2.7 44.9 ± 2.6 43.0 ± 2.4 44.0 ± 2.5 44.9 ± 2.7

optimal spatial projections (spatial filters) were calculated based 
on the Fisher’s criterion [23]. Such method made it possible to
reduce the EEG signal dimension, increase the signal-to-noise 
ratios of the studied components, and largely isolate two 
components from each other for independent study [23]. The 
further analysis was performed for these two extracted spatial 
components (once for N1 and once for P300). Signals of the 
components were normalized to the standard deviation of all 
non-target epochs within each subject (hereinafter, AU instead 
of μV).

A set of target and non-target epochs was formed within 
each subject, component (N1 and P300), and mode. To acquire 
ERPs averaged by conventional method, all the epochs of the 
same subject were averaged individually for each mode, for 
the class of the target and non-target epochs of the N1 and 
P300 sets. The amplitude of these components was defined 
as the minimum/maximum signal value within the 100–350 and 
200–500 ms windows, respectively, and the peak latencies 
were defined as the time after the stimulus onset when the 
signal reached its maximum or minimum.

Furthermore, to analyze the ERP variability, the N1 and 
P300 component latencies were calculated within certain 
non-averaged target epochs as local minima or maxima in the 
same windows as for ERP. The component's amplitude was 
determined by the signal values for the latencies found within 
this epoch. To assess variability of the ERP peak latencies, the 
mean absolute deviation (MAD) was calculated in each mode 
for each subject. To estimate the effect of variability on the ERP 
amplitude, the epochs were shifted along the time axis by the 
difference between the average latency and the component 
latency within certain epoch prior to averaging.

To estimate the effects of ERP variability on the effectiveness 
of command recognition in the BCI, classification accuracy 
was calculated for ordinary EEG channels (standard approach) 
and for the extracted spatial components N1 and P300. It is 
important to note that classification scores of two types were 
calculated for the latter: without equalization of latency peaks 
and with equalization (correction for N1 or P300 only and 
correction for both peaks, N1 and P300). The signal amplitude 
values within the 0–600 ms window (every 10th point) in 11 
channels of EEG leads Cz, CP1, CP2, P3, Pz, P4, PO7, POz, 
PO8, O1, O2 or two channels obtained for N1 and P300 of 

appropriate spatial components were used as the Fisher's 
linear discriminant features. The classification accuracy was 
assessed by cross-validation with sequential testing of the 
data of a single block (all epochs of the same target cell) of the 
classifier trained using the other 14 blocks. The classification 
accuracy was determined as a proportion of the correctly 
recognized letters (out of 15). When performing testing, 
accuracy was calculated for different number of the stimulus 
sequences (one to five). The accuracy was calculated for each 
mode, subject, and signal feature extraction method.

Statistical analysis was performed in MATLAB using the 
generalized linear mixed effects models. A single constant 
coefficient was used as a random factor for the "subject" 
variable, while experimental conditions (“active attention”, 
“cognitive load”, “half-empty matrix”, “mixing up elements”) 
and latency correction modes were considered as fixed effects. 
The fixed effect significance was assessed using F-test. The 
following dependent variables were assessed: amplitude, 
latency, MAD of the N1 and P300 latencies, and classification 
accuracy. We used binomial regression to assess classification 
accuracy and linear regression to assess other parameters.

RESULTS

Fig. 2 shows the extracted spatial components N1 and P300 
and the corresponding patterns (topographic distribution of 
weighting coefficients). The N1 component with the average 
latency of 187 ms had typical lateral occipital localization, while 
P300 with the latency of 315 ms had medial parietal localization.

Table 1 provides the group-averaged amplitudes of the N1 
and P300 components obtained in each mode, before and 
after correction of latencies within individual epochs. The 
N1 and P300 amplitudes of the averaged ERPs increased 
after applying correction: F(1.258) = 581.24; p = 0.00000. 
The factor of active attention turned out to be significant for 
the N1 amplitude that increased relative to passive attention 
to the stimulus (mode 1): F(1.36) = 17.87; p = 0.00015. The 
increase in the N1 amplitude was reported for such factors, 
as “half-empty matrix” (F(1,110) = 16.10; p = 0.00011) and 
“cognitive load” (F(1.110) = 48.49; p = 0.00000). The increase 
in the P300 amplitude was reported for the “cognitive load” 
factor (F(1.110) = 18.01; p = 0.00005), while the decrease 
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Table 3. The average classification accuracy obtained in all modes for one or two stimulus sequences that has been calculated for various signal feature sets used by 
the classifier — usual 11 EEG electrodes and the extracted spatial components N1 and P300 with or without peak latency correction. The mean and standard error of 
the mean are provided. N = 19 subjects 

Method of the signal feature extraction Mode  1 Mode  2 Mode  3 Mode  4 Mode  5 Mode  6 Mode  7

Accuracy when using one stimulus sequence, %

EEG leads 66.7 ± 5.4 75.3 ± 4.6 77.29 ± 3.7 74.4 ± 4.0 84.2 ± 3.0 68.4 ± 4.6 80.7 ± 3.1

Spatial components 56.4 ± 5.8 63.5 ± 4.2 68.8 ± 3.7 62.8 ± 3.2 76.8 ± 2.8 59.7 ± 3.7 73.0 ± 3.3

Spatial components + correction of N1 + Р300 76.8 ± 3.4 81.8 ± 2.9 86.3 ± 3.0 85.3 ± 2.6 86.7 ± 2.9 76.1 ± 2.5 84.9 ± 2.2

Accuracy when using two stimulus sequences, %

EEG leads 83.9 ± 4.1 90.0 ± 2.1 94.7 ± 1.4 94.0 ± 1.7 96.8 ± 1.3 88.8 ± 4.1 92.3 ± 2.1

Spatial components 75.8 ± 4.9 86.6 ± 3.3 86.3 ± 2.8 88.8 ± 2.0 93.3 ± 1.9 82.8 ± 4.0 93.0 ± 1.2

Spatial components + correction of N1 + Р300 94.0 ± 1.2 97.1 ± 1.0 97.5 ± 1.6 93.3 ± 1.8 97.9 ± 1.0 95.4 ± 1.5 96.8 ± 1.5

Fig. 3. The average classification accuracy with different number of the stimulus 
sequences calculated for various signal feature sets used by the classifier —
usual 11 EEG electrodes, extracted spatial components N1 and P300 
(no latency correction, latency correction applied to N1 only, to P300 only, or 
to both components, N1 and P300). The mean and standard error of the mean 
are provided. N = 19 subjects
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was reported for the factor of “mixing up elements” (F(1.110) = 4.72; 
p = 0.032).

The average latencies of the N1 and P300 components 
together with the indicator of the latency variability (MAD) are 
provided in Table 2. The decrease in the N1 and P300 latencies 
were reported for the factor of “half-empty matrix”: F(1.110) = 45.87,
p = 0.00000 and F(1,110) = 24.51, p = 0.00000, respectively. 
The increase in the N1 latency was also reported for 
the factor of “mixing up elements”: F(1.110) = 5.17; 
p = 0.025. Active attention resulted in the decrease of the 
N1 component MAD relative to the passive attention mode: 
F(1.36) = 1.60; p = 0.0016. The decrease in the N1 MAD was 
reported for the factors of “half-empty matrix” (F(1.110) = 12.43; 
p = 0.00061) and “cognitive load” (F(1.110) = 11.56; 
p = 0.00094). As for P300, the increase in MAD was reported 
for the factor of “mixing up elements”: F(1.110) = 4.80; 
p = 0.03056.

Table 3 provides assessment of the average classification 
accuracy in all modes using different signal feature extraction 
methods: EEG channels and the channels for N1 and P300 of 
the corresponding spatial components, to which the latency 
correction was applied or not applied. The table provides data 
for the minimum number (1 or 2) of the stimulus sequences 
per letter, when accuracy is still low, and the differences 
between the modes are larger. The trend towards an increase 
in accuracy is reported for the “cognitive load” factor: 
F(1.108) = 3.39; p = 0.068.

Fig. 3 presents the average classification accuracy 
for different signal feature extraction methods and different 
number of the stimulus sequences. When using spatial filters 
(only two data vectors, for N1 and P300) without latency 
correction, the accuracy was the lowest and was even lower 
than when using the usual 11 EEG electrodes: F(1.3284) = 5.99, 
p = 0.014. Applying latency correction to the spatial component 
N1 only yielded higher accuracy, however, this option did not 
differ significantly from the option involving the use of usual 
EEG electrodes: F(1.3284) = 1.1771, p = 0.28. However, 
applying latency correction to the spatial component P300 
only resulted in higher accuracy compared to the use of usual 
EEG electrodes: F(1.3284) = 24.51, p = 0.00000. The highest 
classification accuracy values were obtained when applying 
latency correction to both N1 and P300 (in each of the two 
appropriate spatial components). In this case, the accuracy 
was higher compared to the use of usual EEG electrodes 
(F(1.3284) = 24.29, p = 0.00000) and higher than when applying 
latency correction to P300 only (F(1.3284) = 4.34, p = 0.037) 
(as for the latter, the differences were reported for the 2nd and 
3rd stimulus sequences: p < 0.05).

DISCUSSION

In our study we proposed an effective approach to assessing 
the ERP variability in the P300 BCI that allowed us to identify a 
number of factors affecting the ERP characteristics and explore 
the contribution of the variability effects to the command 
recognition accuracy in this interface.

To analyze the effects of the ERP latency variability, it 
is necessary to detect the components in individual (non-
averaged) epochs. This process is very complicated due to 
both technogenic and physiological noise, that is why it is 
extremely important to make the most of valuable information 
contained in the EEG signal. Despite the fact that in some 
trials the effects of variability were studied in terms of the P300 
BCI, the impact of these effects was estimated in usual EEG 
channels for the P300 component only [17, 24]. In our previous 
study, we applied latency correction to two components, N1 
and P300, however, each component was analyzed in its own 
channel set [18]. The use of the combined information from 
all channels with simultaneous analysis of several components 
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in each of these channels can be a more effective approach. 
For example, the independent components extracted by ICA 
have been already used by the authors of papers on assessing 
variability (not related to BCI), however, these researchers 
have analyzed only one early component of ERP [21. 25]. 
Furthermore, the ICA method does not guarantee extraction 
of the components of interest for analysis. In this study we 
have proposed the use of spatial filters for extraction of two 
components, N1 and P300, that are functionally significant 
for the P300 BCI, with subsequent analysis of variability in 
these components instead of individual EEG channels. This 
method was used earlier [23], but in that study it was an 
additional step of preprocessing and extraction of the signal 
features for classification in the BCI, it had nothing to do with 
assessment of the ERP variability effects. The extraction of 
spatial components aimed at independent correction of these 
components has never been applied previously. Moreover, the 
use of the approach involving spatial components reduces the 
likelihood of erroneous peak detection within individual epochs 
compared to the use of signal in certain EEG leads, thereby 
making the variability analysis more objective.

An essential aspect of the work was to reveal the possible 
factors affecting the ERP characteristics in the P300 BCI. 
Active attention (the directive to emotionally count flashes) 
resulted in the increase in the N1 component amplitude, and 
the mechanism underlying such an increase was likely to 
include the decrease in the latency variability of responses to 
individual stimuli, since a simultaneous decrease in MAD was 
observed. The increase in the ERP components' amplitude 
relative to passive attention to stimuli in the P300 BCI has 
been earlier reported for such construct in this group [26]. 
Presumably, the directive to actively count the stimuli improves 
fixation of gaze on the target position within the matrix, which is 
important for the N1 component [27]. Lack of characters in all 
cells of the matrix is also likely to improve fixation of gaze on the 
target cell, since the N1 amplitude increase in the “half-empty 
matrix” mode has been reported along with the decrease in 
its variability. This is consistent with opposite effects on the 
N1 component in the environment, where tracing the target 
objects is complicated by their mobility [18], and supports 
the relationship between the features of oculomotor system 
function and the ERP components' variability [28].

The constant changing of characters in the matrix cells 
is likely to adversely affect attention to the target stimulus, 
as evidenced by the decrease in the P300 amplitude and 
the increase in its variability, along with the increase in the 
N1 latency. The negative impact of such manipulations with 
the stimulus environment on the P300 BCI is also confirmed 
by the fact that the subjects have reported trouble following 
instructions in the modes involving mixing-up characters. At 
the same time, an interesting and not entirely obvious result 
is that additional cognitive load applied in the modes involving 
mixing-up characters (counting consonants with the change of 
letters), in contrast, resulted in the increase in the N1 and P300 
amplitudes. Furthermore, the effect reported for N1 at least 

partially resulted from the reduced variability. It is well-known 
that the effects of individual responses' variability are enhanced 
when the subject's attention flits between two competing 
tasks [29]. Perhaps, the cognitive load integrated into a task 
of tracing the target events, that was used in our study, on 
the contrary, caused the increase in attention, that is why such 
modification of the stimulus environment may be prospective 
for the P300 BCI.

The potential effectiveness of using the factors that have 
a beneficial effect on attention in the BCI is also confirmed by 
the trend towards the increased target stimuli classification 
accuracy in the modes with cognitive load (Table 3). The 
method of applying variability correction not to usual EEG 
leads, but to the extracted spatial components N1 and P300, 
that has been proposed in our study, has ensured the best 
classification accuracy (Fig. 2). Furthermore, the largest 
increase in accuracy is observed when using the least number 
of the stimulus sequences (94% vs. 84%). This emphasizes 
the value of this method for the P300 BCI operation modes 
and provides superior results compared to that yielded by the 
studies also involving extraction of spatial components, but 
not taking into account the effects of variability [23, 30]. The 
fact, that the N1 and P300 components' contributions to the 
effectiveness of classification are unequal, attracts attention: 
the contribution of uncorrected N1 is larger than that of 
uncorrected P300. However, given the higher P300 variability, 
correction of its latency resulted in the significantly increased 
accuracy, thereby overperforming both correction of N1 only 
and the use of standard EEG electrodes.

To date, the fact, that in this study we have not adjusted 
latency in the non-target epochs, is considered to be a 
limitation of the approach. In the future, it would be necessary 
to develop an algorithm, which, for example, would allow us 
to avoid correction of low-amplitude peaks in the non-target 
epochs, for implementation of the online BCI.

CONCLUSIONS

The paper proposes an approach to analysis of the ERP 
latency variability in the extracted EEG spatial components. 
The use of this method in the P300 BCI has made it 
possible to achieve better results in terms of the command 
classification accuracy compared to the existing methods. 
Furthermore, the use of such an approach has revealed 
some factors of the stimulus environment and the P300 BCI 
operation modes having an impact on the ERP variability 
effects. Specifically, modifications of the interface affecting 
the user's attention, including the cognitive load applied 
in addition to the main task, and making it easier to fix 
gaze on the target objects have a beneficial effect on the 
ERP amplitude and the decrease in variability of individual 
responses to stimuli. The findings complement the existing 
knowledge of the mechanisms underlying the ERP latency 
variability and provide new reasons for the development of 
more effective BCI systems.
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