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DEEP LEARNING IN MODELLING THE PROTEIN–LIGAND INTERACTION: 
NEW PATHWAYS IN DRUG DEVELOPMENT

The deep learning technologies have become the driver of the revolutionary changes in scientific research in various fields. The AlphaFold-2 neural network software 

development that has solved the semicentennial problem of 3D protein structure prediction based on primary amino acid sequence is the most obvious example of 

using such technologies in structural biology and biomedicine. The use of deep learning methods for the prediction of protein–ligand interactions can considerably 

simplify predicting, speed up the development of new effective pharmaceuticals and change the concept of drug design.

Keywords: docking, protein–ligand interaction, neural networks, deep learning

Correspondence should be addressed: Zinaida M. Osipova
Miklukho-Maklaya, 16/10, Moscow, 117997, Russia; zkaskova@ibch.ru

1 Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
2 Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
3 Pirogov Russian National Research Medical University, Moscow, Russia

Received: 06.12.2023 Accepted: 22.01.2024 Published online: 08.02.2024

DOI: 10.24075/brsmu.2024.002

Funding: the study was supported by the Russian Science Foundation grant, project № 22-44-02024 (https://rscf.ru/project/22-44-02024/).

Author contribution: Barykin AD — literature review, manuscript writing, Chepurnykh TV — concept, literature review, manuscript writing and editing, Osipova ZM — 
project management, manuscript editing.

Ключевые слова: докинг, белок-лигандное взаимодействие, алгоритм нейросети, глубокое обучение

А. Д. Барыкин1,2, Т. В. Чепурных1, З. М. Осипова1,3

ГЛУБОКОЕ ОБУЧЕНИЕ В МОДЕЛИРОВАНИИ БЕЛОК-ЛИГАНДНОГО ВЗАИМОДЕЙСТВИЯ: 
НОВЫЕ ПУТИ В РАЗРАБОТКЕ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ 

Технологии глубокого обучения стали драйвером революционных изменений в научных исследованиях разных областей. Наиболее ярким примером 

их применения в области структурной биологии и биомедицины является программная разработка нейросеть AlphaFold-2, решившая полувековую 

проблему предсказания 3D-структуры белков по первичной аминокислотной последовательности. Использование методов глубокого обучения для 

предсказания белок-лигандных взаимодействий сможет значительно упростить предсказание, ускорить разработку новых эффективных лекарственных 

препаратов и поменять концепцию драг-дизайна.
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Computer (in silico) modelling of protein–ligand interaction plays 
a key role in biomedical research and represents one of the 
fundamental challenges of the ongoing process of developing 
new pharmaceuticals. The higher is the affinity and selectivity 
of the bioactive molecule binding with the receptor or enzyme, 
the more effective and safe the resulting drug candidate will 
be. The model reliability determines the quantity and quality 
of the candidate molecules, which will undergo the expensive 
procedure of chemical synthesis and testing in vitro and in vivo. 
Modelling often represents the key phase: this to the great 
extent determines the time and cost of the design, as well as 
the final price of the drug [1]. Until recently, there was no highly 
effective method for automated bioinformatics analysis of the 
protein–ligand interaction.

Conventional computer modelling methods

Molecular docking is a molecular modelling method predicting 
the best position of the ligand relative to the target protein that 

uses their 3D structures and the molecular interaction energy 
scoring functions. The scoring function learning (Fig. 1А) is 
usually based on the set of the experimentally determined 
affinity values of protein binding to the ligands similar to the 
studied one. Thus, the prediction accuracy will depend directly 
on the similarity of the studied new candidate to the known 
ligands from the database.

The great diversity of scoring functions can be explained 
by insufficient reliability of each of these functions in case of 
solving a specific problem. Various scoring functions are more 
appropriate for various classes of ligands, however, there is 
no absolute guarantee of the result even when the method is 
selected correctly. That is why consensus assessment (using 
the data of several scoring functions at once) increases the 
likelihood of successful docking [2]. 

In case of rigid docking, the algorithms consider the ligand 
and target molecules as solids, while in case of dynamic 
docking the programs admit the possibility of conformational 
changes in the ligand associated with binding. The methods 
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underlying the docking algorithms (Fig. 1B) can be divided 
roughly into systematic and statistical. The systematic methods 
split molecule into several parts, thereby allowing one to assess 
affinity of interaction for each part, and then ensure covalent 
cross-linking of the parts in order to reassemble the ligand. 
Statistical methods to find the global energy minimum generate 
random changes, for each of which the thermodynamic 

state is estimated [3]. Statistical methods include the Monte 
Carlo method, tabu search, particle swarm optimization, and 
evolutionary algorithms. The systematic algorithms guarantee 
achievement of results in a finite number of steps (usually very 
large), while the statistical ones can “miss” the energy state of 
interest. However, in practice, statistical algorithms more often 
yield more reliable results than systematic ones.

Fig. 1. Molecular docking algorithms. А. Types of scoring functions for molecular docking. B. Variants of molecular docking algorithms and molecular dynamics 
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In the last two decades, dozens of free and commercially 
available molecular docking programs have emerged: DOCK, 
AutoDock, Surflex, LigandFit, MCDock, LeDock, AutoDock 
Vina, rDock, UCSF Dock, and many more [4]. The programs 
usually use several algorithms at once, allowing one to adapt 
docking for specific enzyme–ligand pairs.

In the majority of cases, the modern protein–ligand docking 
methods correctly determine the ligand binding site and binding 
mechanism, however, these are unable to define its affinity accurately 
enough [5]. This significantly reduces the method applicability for 
discovery of new pharmaceuticals, since the candidate molecules 
are selected based specifically on the binding energy.

The molecular dynamics (MD) method is based on the use 
of the equations of atom motion and the empirical potential 
energy functions for calculation of interatomic interactions 
and characterization of the molecular system evolution over 
time. The interatomic interactions include elastic interactions 
(corresponding to covalent bonds) and Van der Waals forces.  
The most important post-processing methods to calculate free 
energy of the bond in the protein–ligand interaction complex 
also use the principles of molecular mechanics involving the 
Poisson–Boltzmann equation / Generalized Born model, as 
well as some additional approaches, such as thermodynamic 
integration and free analysis [6].

The molecular trajectory length determined by the number 
of simulation steps is the main limitation of the molecular 
dynamics method. The simulation time step should be 
comparable with the fastest motion in the system, i.e. with the 
bond fluctuations (1–2 fs). Thus, modelling slow processes, 
such as large domain motions and binding (µs–ms), requires 
many MD steps, which significantly increases the amount of 
computation. That is why detection of actual protein–ligand 
binding is a very rare phenomenon [7]. It was expected that 
the MD modelling based on the binding computation involving 
the use of molecular mechanics and the Poisson–Boltzmann 
equation would contribute significantly to the solution of real 
problems, such as identification of the most advantageous 
combination for the protein–ligand pairs with their further 
optimization.  

Deep learning: another chapter in modelling the 
protein–ligand interaction 

The first deep learning methods emerged in the mid-1960s, 
however, these became popular by the mid-2000s due to 
the increase in processing power and the emergence of large 
experimental data sets. Today, application of deep learning 
technologies to problems in various disciplines has yielded the 

Fig. 2. Neural network operation algorithms. А. Neural network training methods. B. Major types of neural networks predicting the protein–ligand interactions  
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results that are not inferior, and sometimes even superior, to 
the results yielded by conventional methods. Creation of the 
AlphaFold-2 algorithm predicting the protein tertiary structure 
based on the primary amino acid sequence within only a few 
minutes is the most obvious example [8], which has become a 
revolution in the field of structural biology.

The deep learning models were proposed for the prediction 
of protein–ligand interaction as an alternative to conventional 
docking based on the search for the free energy minimum [9]. 
The advantage of deep learning is that there is a possibility 
of studying the protein–ligand interaction based directly 
on the spatial arrangement of atoms, without selecting the 
mathematical parameters that not always reflect the actual 
binding mechanism. This method to predict protein–ligand 
interaction is currently developing rapidly: the DeepSite neural 
network model published in 2017 [10] correctly determined 
23.8% of ligand binding sites in the specific dataset, while the 
Kalasanty neural network published in 2020 yielded the result 
of 44.6% for the same sample. In 2021, PUResNet significantly 
improved the prediction results (53% success for PUResNet 
vs. 51% for Kalasanty) [11].    

To date, a wide variety of the neural network operation and 
training algorithms has been developed (Fig. 2). Convolutional 
neural networks (CNN), graph neural networks (GNN), and 
transformer neural networks are usually used to study protein–
ligand interactions. Convolutional neural networks consider the 
relationships between pairs of atoms through the prism of their 
relative spatial positions.  The operation principle of graph neural 
networks is based on recording the threshold values aimed to 
determine the type of interaction between atoms (covalent or 
non-covalent). The use of the lower number of parameters 
represents the potential advantage of this approach. The 
combinations of several algorithms are also used, or the other 
modules (such as denoising autoencoder) that improve the 
outcome are added [12].

CONCLUSION

No definite leader has been revealed among various neural 
network architectures: accuracy of the results yielded by 
each algorithm depends on the types of proteins and ligands, 

affinity, and binding mechanism. According to the latest data, 
the egGNN and saCNN graph neural networks turned out to 
be the most successful in terms of ligand affinity prediction 
[13, 14], however, the differences from convolutional neural 
networks are not critical. We believe that this is due to 
the fact that no optimal prediction algorithm has yet been 
developed. Creating such an algorithm, judging by the pace 
of AI development in computational biology, is more likely to 
take years, not decades. Just like AlphaFold-2 changed the 
paradigm in the area of protein structure investigation in 2020, 
the use of artificial intelligence in biomedical research opens a 
new chapter in pharmaceutical industry and drug design. 

The prospects of using AI for drug discovery have become 
apparent for the industry, since the use of AI significantly 
accelerates and reduces the cost of the conventional 12-year 
lifecycle of drug development. Over the past five years, almost all 
large pharmaceutical companies announced a partnership with 
the leading AI companies (Sanofi — Aily Labs, Pfizer — IBM, 
Novartis — Microsoft, AstraZeneca — Benevolent, etc.). The 
research details are likely to be protected by trade secret for 
a long time, however, press releases are being regularly issued 
that suggest introduction of deep learning into the ongoing R&D 
processes. Furthermore, more and more reports appear of the 
success of drug candidates designed using AI that are being 
prepared for or are through clinical trials. The examples include 
halicin (the promising broad-spectrum antibiotic, preclinical trial) 
[15], INS018_055 (drug for idiopathic pulmonary fibrosis, phase 
2 clinical trial), REC-2282, REC-994, REC-4881, BEN-2293, 
EXS-21546, RLY-4008, EXS-4318, BEN-8744, etc. [16].

We believe that the search for the pool of new bioactive 
molecules will accelerate dramatically in the near future, and 
deep learning will become an essential element of the process 
of developing new pharmaceuticals. However, competent 
selection of the data that are used to train a neural network 
model still represents one of the topical problems on the path 
to the widespread use of deep learning for drug discovery, 
since the quality of these data is critical for reliability of 
predictions made by the model. In this regard, the task of the 
most effective training involving the use of incomplete or small 
datasets remains the main challenge faced by AI in the field of 
drug design [17].
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