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Today, one of the key tasks before the pharmaceutical industry 
is to increase the efficacy of production of biotherapeutic 
drugs. Depending on the desired composition of the drug, the 
stages that may present hindering obstacles are the search 
for a natural source thereof or the development of its artificial 
analogue, boosting production by the source, or optimization 
of purification (removal of impurities and ineffective forms) [1, 
2]. We would like to present the potential of non-traditional cell 
cultures as a key part of the solutions to such problems. 

Cell cultures are most common in the production of 
biotherapeutic protein preparations, with monoclonal antibodies 
being the most significant thereof. The flagship culture is that 
of Chinese hamster ovary cells (CHO): it is easy to cultivate 
and grows rapidly, guarantees correct translation, folding and 

posttranslational modification of the recombinant protein, and 
releases large amounts of the product into the culture medium, 
yielding the largest amounts of the target drug among all 
mammalian cell cultures [3]. The drawbacks of all mammalian 
cell cultures, including CHO, are high cost and need for special 
working conditions and equipment, as well as susceptibility 
to metabolic burden. When the output of the recombinant 
protein reaches a certain level, this burden prevents standard 
production boosting technologies from working, including those 
that involve increasing the number of copies of the recombinant 
gene, using stronger regulatory sequences, etc. [4]. This 
happens because recombinant processes begin to compete for 
resources with the host cell's viability maintenance processes; 
there are about 8–10 of these in total, including the processes of 
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transcription, translation, post-translational modifications, and 
protein export [5]. Various metabolism balancing techniques 
are used to counter the negative effects of metabolic burden, 
but this is a very labor-intensive process, since it is necessary 
to identify all the limiting stages [6] and choose the method to 
overcome them without compromising the overall viability of 
the producing cell [7, 8]. However, even successful metabolism 
balancing may not yield a significant boost in recombinant 
protein production, since in the case of some biotherapeutic 
proteins, the process is so laborious for a mammalian host cell 
that all attempts to optimize it are limited by the physiological 
capabilities of that cell. For example, recombinant production of 
the blood coagulation factor VIII (F8) in the CHO culture has the 
approximate "energy cost" of about 10,000 ATP molecules per 
a functional F8 molecule [5].   

As an alternative, protein preparations can be produced 
in hosts whose physiological resources are initially higher than 
those of mammalian cells; such hosts are cells from other 
animal species or orthogonal cellular systems, like plant cell 
cultures (Table). One of the main advantages of plant-based 
biotherapeutic compounds is their safety: they cannot be 
infected with human pathogens, produce no endotoxins, and 
have reduced immunogenicity, which improves drug tolerance 
and minimizes side effects. For example, taliglucerase alpha 
(β-D-glucosyl-N-acylsphingosinglucohydrolase) produced in 
transgenic carrot cells for treatment of Gaucher disease type 1 
has shown to not trigger any evident side effects associated 
with N-glycan residues during clinical trials. Moreover, no 

antibodies to this drug have been detected [9]. In addition, 
biological preparations produced in plant cell cultures can 
be administered orally without purification or with minimal 
purification. Plant cell walls can protect biological products 
from enzymatic degradation in the gastrointestinal tract, as 
well as facilitate the delivery of these drugs to the intestine 
lymphoid tissue in the active form. Clinical trials have shown 
that production of oral biopharmaceuticals from edible plant 
tissues is feasible [10].

Plant cell cultures allow achieving a high level of expression 
of multiprotein complexes that require complex folding and 
assembly processes, which is also an important aspect in 
the context of their use for the purpose. Strategies involving 
construction of a single vector with a set of recombinant genes 
and joint biosynthesis of recombinant proteins together with 
chaperones of the same origin can help increase the output of 
such complexes [11]. In addition, introduction of an exogenous 
signal sequence directing the protein along a specific secretory 
pathway can increase the yield of small proteins weighing less 
than 30 kDa. We believe that optimization of the fermentation 
process, including continuous or semi-continuous fermentation, 
is a universal method of increasing protein output from both 
plant and insect cell cultures.

Insect cell lines Spodoptera frugiperda Sf21, Sf9 and 
Trichoplusia ni BTI- 5B1-4 (High Five), adherent nonpermissive 
cell cultures obtained from ovarian tissues of the respective 
insects, are also widely in production of biotherapeutic proteins 
in baculovirus expression systems [12]. Insect cell cultures 

Table. Comparison of the most common types of expressing cell cultures [11, 24, 25]

Expression platform Advantages Flaws
Post-translational 

modifications

Cost, 
complexity of 
purification

Scaling 
potential

Safety

Bacteria 
(E. coli)

Low cost 
Simple genetic engineering 

process 
Rapid growth of culture and high 

yield of the target product 
Proven expression optimization 

strategies

Incorrect folding of 
some proteins and 

formation of inclusion 
bodies. 

Presence of endotoxins

Non-native 
No glycosylation 
Difficulties with 

formation of disulfide 
bonds

Low +++ Moderate

Yeasts  
(P. pastoris, 

 S. cerevisiae)

Low cost 
Simple genetic engineering 

process 
Rapid growth of culture and high 

yield of the target product 
Proven optimization strategies 

Correct folding of large
 (> 30 kDa) proteins

Cell wall can handicap 
purification

Non-native 
There are strains  

with limited 
glycosylation 
capabilities

Low +++ Moderate

Plant-based 
systems  

(BY-2, NT-1)

Rapid growth of culture and high 
yield of the target product 

Possibility of expression of multi-
protein complexes

Genetic instability of 
lines during long-term 

cultivation 
Increased risk of culture 

contamination

Non-native (genetic 
vectors optimization 

required)

Moderate / 
None for edible 

plants
+++ Very high

Insect cells  
(Sf21, Sf9, Hi5)

Expression of eukaryotic multi-
protein complexes with correct 

folding 
Higher product yields

Expression with strong 
promoters can disrupt 

folding 
Non-targeted 
glycosylation

Simplified 
N-glycosylation

Moderate +++ Low

Mammalian cells  
(CHO, HEK293)

Native lipid environment and 
folding conditions 

Possibility of inducible 
expression by transient 

transfection 
Possibility of using FACS 

(Fluorescence Activated Cell 
Sorting) on stable lines

Low expression level 
Overexpression of some 

proteins is impossible 
due to toxicity 

Long-term optimization 
of expression conditions

Native Moderate ++ Low

Cell-free expression 
systems

Fast expression method 
Possibility of producing toxic 

proteins 
Detailed control of environmental 

parameters during expression

High cost 
Lack of in vivo factors 

enabling folding

Need for additional 
components 

(EPR microsomes, 
etc.)

Low + Very high
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