

FEATURES OF THE IMMUNE RESPONSE TO TUMOR ALLOANTIGENS IN THE CONTEXT OF DECREASED CLONAL DIVERSITY OF T CELLS

Korotkova MS, Persiyantseva NA, Kalinina AA, Khromykh LM, Kazansky DB

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia

A T cell receptor (TCR), an $\alpha\beta$ heterodimer, recognizes peptide antigens presented by self molecules of the major histocompatibility complex (MHC). A significant number of T cell clonotypes are alloreactive: they can interact with various allelic variants of MHC and the associated peptides. Currently, it is unclear whether the effectiveness of the allogeneic immune response depends on the diversity of the TCR repertoire. Seeking to experimentally narrow the diversity of T cell clonotypes, we used mice with transgenic expression of the β -chain TCR (TCR β) in this work. We analyzed how the TCR β -transgenic mice on the CBA/Lac (H-2 b) background respond to EL-4 (H-2K b) lymphoma cells *in vivo* with the aim to assess the effect of a narrower repertoire on the allogeneic immune response. The study has shown that transgenic mice develop a weak immune response to transplant antigens, and the formed pool of cytotoxic T cells is 1.5–1.7-fold smaller than that in wild-type animals. Consequently, the mice failed to reject the allogeneic tumor, leading to 100% mortality rate. The results of this work are consistent with the data from our earlier studies that employed another TCR β -transgenic model. They confirm that the decreased diversity of the TCR repertoire impairs the response to alloantigens, allowing the tumor to evade the immune response and progress in the allogeneic recipient.

Keywords: T-cell, T-cell receptor, allogeneic response, decreased clonal diversity

Funding: the study was financially supported by the Russian Science Foundation grant No. 22-15-00342-П (<https://rscf.ru/project/22-15-00342/>).

Author contribution: Korotkova MS — experimental work, analysis of the results; Persiyantseva NA — experimental work, analysis of the results, article editing; Kalinina AA — study planning, analysis and interpretation of the results, analysis of the available literature, article authoring and editing; Khromykh LM — article editing; Kazansky DB — study planning, analysis and interpretation of the results, analysis of the available literature, article editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the N.N. Blokhin National Research Medical Center of Oncology of the Ministry of Health of the Russian Federation (Minutes No. 3-П10.06.2022 of June 10, 2022) and conducted in strict accordance with the provisions of Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes.

 Correspondence should be addressed: Dmitry B. Kazansky
Kashirskoe shosse, 24, str. 15, Moscow, 115478, Russia; kazansky1@yandex.ru

Received: 06.10.2025 **Accepted:** 01.11.2025 **Published online:** 14.11.2025

DOI: 10.24075/brsmu.2025.057

Copyright: © 2025 by the authors. **Licensee:** Pirogov University. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

ОСОБЕННОСТИ ИММУННОГО ОТВЕТА НА ОПУХОЛЕВЫЕ АЛЛОАНТИГЕНЫ В УСЛОВИЯХ СОКРАЩЕННОГО КЛОНАЛЬНОГО РАЗНООБРАЗИЯ Т-КЛЕТОК

М. С. Короткова, Н. А. Персианцева, А. А. Калинина, Л. М. Хромых, Д. Б. Казанский

Национальный медицинский исследовательский центр онкологии имени Н. Н. Блохина Минздрава России, Москва, Россия

Т-клеточный рецептор (ТКР), представляющий собой $\alpha\beta$ -гетеродимер, предназначен для распознавания пептидных антигенов в комплексе с собственными молекулами главного комплекса гистосовместимости (МНС). При этом значительная доля клонотипов Т-клеток обладает аллореактивностью, т. е. способностью взаимодействовать с различными аллельными вариантами МНС и ассоциированными с ними пептидами. В настоящее время нет четкой определенности, зависит ли эффективность аллогенного иммунного ответа от широты репертуара ТКР. В данной работе использовали мышей с трансгенной экспрессией β -цепи ТКР (ТКР β), что позволило экспериментально сузить разнообразие клонотипов Т-клеток. Цель работы — проанализировать развитие ответа ТКР β -трансгенных мышей на генетической основе СВА/Лак (H-2 b) на клетки лимфомы EL-4 (H-2K b) *in vivo* для оценки влияния сужения репертуара на аллогенный иммунный ответ. Показано, что у трансгенных мышей развивается слабый иммунный ответ на трансплантационные антигены с формированием пула цитотоксических Т-клеток, в 1,5–1,7 раза сокращенного по сравнению с животными дикого типа. Вследствие этого отторжение аллогенной опухоли становится невозможным, и наступает гибель 100% животных. Полученные данные согласуются с результатами наших ранних исследований с использованием другой ТКР β -трансгенной модели и подтверждают, что снижение разнообразия репертуара ТКР ухудшает эффективность ответа на аллоантигены и создает условия для избегания опухолью иммунного ответа и ее прогрессирования в аллогенном реципиенте.

Ключевые слова: Т-клетка, Т-клеточный рецептор, аллогенный ответ, сокращение клонального разнообразия

Финансирование: работа выполнена при финансовой поддержке гранта РНФ № 22-15-00342-П (<https://rscf.ru/project/22-15-00342/>).

Вклад авторов: М. С. Короткова — проведение экспериментов, анализ результатов; Н. А. Персианцева — проведение экспериментов, анализ результатов, редактирование; А. А. Калинина — планирование исследования, анализ и интерпретация результатов, анализ литературы, написание статьи, редактирование; Л. М. Хромых — редактирование; Д. Б. Казанский — планирование исследования, анализ и интерпретация результатов, анализ литературы, редактирование.

Соблюдение этических стандартов: исследование одобрено этическим комитетом ФГБУ «НМИЦ онкологии им. Н. Н. Блохина» Минздрава России (протокол № 3П-10.06.2022 от 10 июня 2022 г.) и проведено в строгом соответствии с положениями Директивы 2010/63/EU Европейского парламента и Совета Европейского союза от 22 сентября 2010 г. по охране животных, используемых в научных целях.

 Для корреспонденции: Дмитрий Борисович Казанский
Каширское ш., д. 24, стр. 15, г. Москва, 115478, Россия; kazansky1@yandex.ru

Статья получена: 06.10.2025 **Статья принята к печати:** 01.11.2025 **Опубликована онлайн:** 14.11.2025

DOI: 10.24075/vrgmu.2025.057

Авторские права: © 2025 принадлежат авторам. **Лицензиат:** РНИМУ им. Н. И. Пирогова. Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY) (<https://creativecommons.org/licenses/by/4.0/>).

T cells, the component of the adaptive immune system, can recognize antigens via the highly specialized T-cell receptor (TCR), which is an $\alpha\beta$ heterodimer in the dominant type of T-cells with the unique structure in each individual clonotype. The peripheral TCR repertoire matures and undergoes selection within the thymus; it is capable of effective interaction with the molecules of the major histocompatibility complex (MHC) that present a foreign peptide or a peptide of an endogenous mutant protein [1]. At that, a significant portion, if not all, clones of peripheral T-cells are alloreactive [2]; that is, they can react to allogeneic MHC molecules and the associated peptides [3–5]. Up to 10% of T-cells of the recipient's T-cell repertoire can participate in the response to an individual allogeneic transplant [6].

Alloreactive T-cells are the key mediators of transplant immunity that mediate acute allograft rejection [7]. Current knowledge is inconsistent regarding whether the diversity of the TCR repertoire determines the intensity of the allogeneic response; the available data are conflicting [8]. Several studies have shown an association between baseline high diversity of the recipient's TCR repertoire and an increased risk of acute rejection of allogeneic transplants [9, 10]. At the same time, it has been established that only a narrow oligoclonal repertoire is involved in graft rejection [11–13].

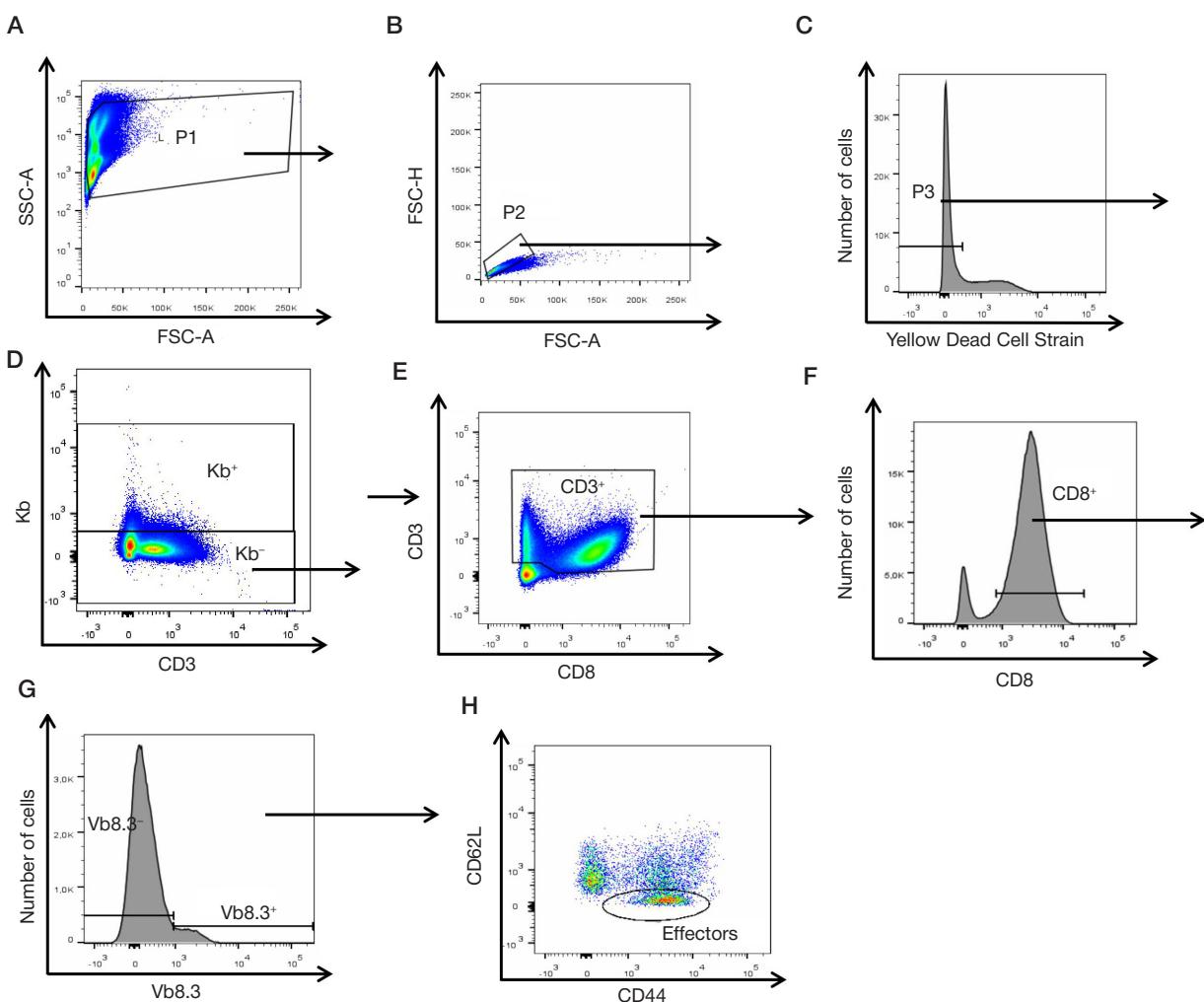
Experimental models involving transplantation of a tumor different in one transplant antigen [14, 15] enable *in vivo* exploration of the dynamics and features of development of allogeneic immune response. Direct recognition of allogeneic MHC class I molecules induces an intense cytotoxic CD8⁺ T-cell response, and the allogeneic tumor is rapidly rejected, with immunological memory formed in the process [14–16]. In this work, we sought to confirm our earlier findings about the dependence of the effectiveness of the allogeneic immune response on the diversity of the TCR repertoire [14]. For this purpose, we used mice with transgenic expression of the β -chain TCR (TCR β) of hybridoma 7, which was described earlier [17]. TCR β transgenesis allows reducing the diversity of T-lymphocyte receptors [14, 18]: under the allelic exclusion rule, the expression of transgenic TCR β blocks gene rearrangement and, consequently, the expression of endogenous β -chains in T-cells. As a result, the repertoire becomes mainly comprised of clonotypes with an invariant β -chain, and its diversity stems only from the endogenous α -chains in the receptor structure.

This study aimed to analyze the development of the immune response to tumor alloantigens in the TCR β transgenic model *in vivo*, in which the T-cell clonal diversity is reduced.

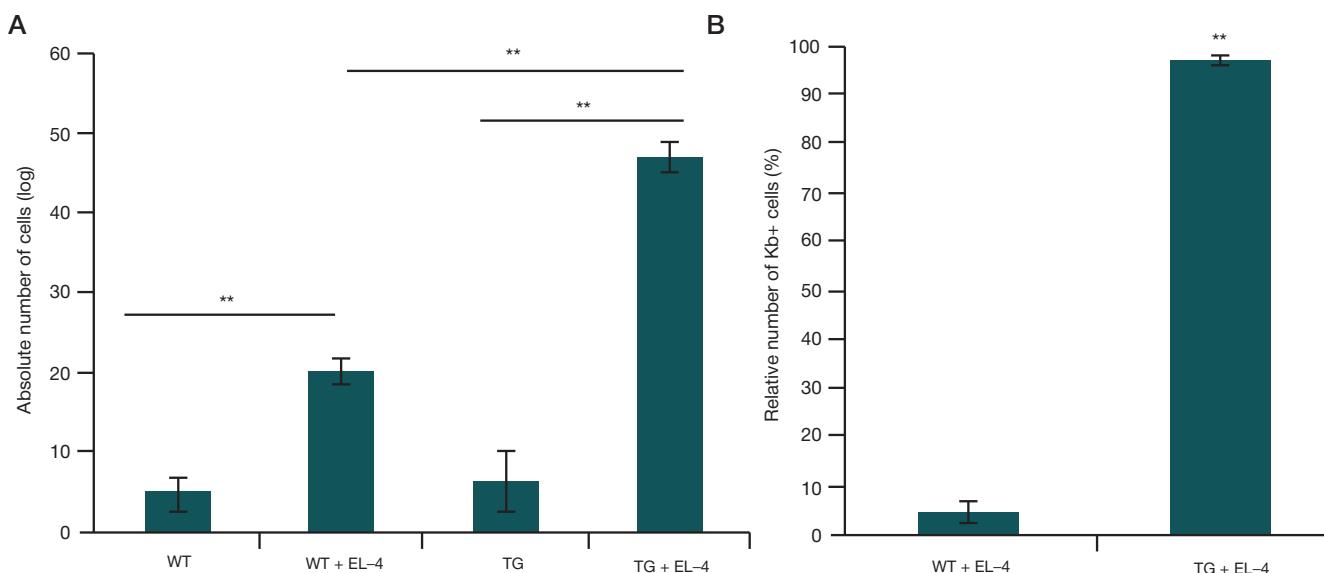
METHODS

We used female mice of the inbred lines CBA/Lac (H-2^k) and C57BL/6 (H-2^b) and transgenic mice 7B (6–8 weeks old, 18–20 g) bred at N.N. Blokhin National Medical Research Center of Oncology. The process of breeding the 7B transgenic mice was described earlier [18]. Initially, the transgene was transferred to the genetic background of C57BL/6 mice. Since the lifetime of the generated mice was limited, which hindered their breeding, the transgene was transferred to the genetic background of the CBA/Lac line; it is currently a part of the collection of the Laboratory of Regulatory Mechanisms in Immunity, Institute of Carcinogenesis (N.N. Blokhin National Medical Research Center of Oncology). 7B transgenic mice express the β -chain TCR, specific to the mutant MHC class I molecule K^{bm3} and the MHC class II molecule I-A^b [17]. The animals were kept at 20–24 °C and 40% relative humidity, with a 12-hour light cycle, and had unrestricted access to feed and water. Transgenic 7B mice and control animals (non-transgenic

wild-type siblings) were injected intraperitoneally with EL-4 (H-2K^b) lymphoma cells at a dose of 1×10^6 cells per mouse in 500 μ l of phosphate-buffered saline (PBS). After injection, we monitored the life span of mice with a follow-up period of more than 30 days. The Kaplan-Meier survival curves were plotted using SRplot [19]. Some of the animals were removed from the experiment by cervical dislocation on the 12th day after EL-4 cell transplantation, with subsequent extraction of peritoneal cells. The obtained lavage cell samples were analyzed by flow cytometry.


We used fluorescently labeled antibodies (BioLegend, USA; BD Bioscience, USA; BD Horizon, USA): CD3 — APC-Cy7, CD8 — PerCP-Cy5.5, CD44 — Pacific blue, CD62L — APC, Vb8.3 — PE, Kb — FITC. Cell samples ($0.5 - 1 \times 10^6$) were incubated with Fc block antibodies (clone 2.4G2, BD Pharmingen, USA) for 10 minutes at 4 °C to prevent nonspecific binding of antibodies, then stained with labeled antibodies for 40 minutes at 4 °C. For the analysis, we used a BD FACS Canto II flow cytometer (BD Bioscience) and the FACSDiva 6.0 software (BD Bioscience). Leukocytes were gated using forward scatter (FSC-A) and side scatter (SSC-A) parameters, and single cells were identified by plotting forward scatter height (FSC-H) against forward scatter area (FSC-A). The LIVE/DEAD fixable yellow dead cell stain kit (Invitrogen, USA) was used to stain dead cells; dead cells were excluded based on this staining and scatter parameters. The expression of surface markers was evaluated in a population of live single leukocytes. The relative number of T-lymphocytes expressing the transgenic TCR β -chain was assessed by staining with anti-Vb8.3 antibodies (the Vb family, to which the 7B transgenic β -chain belongs). The relative number of EL-4 tumor cells in the peritoneal cavity of experimental animals was determined by the expression of the MHC class I molecule H-2K^b (Kb). The populations of T-lymphocytes were analyzed after exclusion of Kb-positive cells. The data was processed in the FlowJo 7.6 software (TreeStar Inc., USA). Figure 1 presents the cytofluorimetric analysis strategy.

The data are presented as the mean \pm standard error of the mean. For statistical analysis, we used the Student's unpaired *t*-test, ANOVA, and the post-hoc Tukey test. The data samples were pre-checked for normality of the distribution using the Kolmogorov-Smirnov test, which confirms the validity of the selection of these statistical methods. For statistical analysis, we used the SRplot online service [19]. The differences were considered significant at $p \leq 0.05$.


RESULTS

As noted above, the transgenesis of the TCR β -chain significantly reduces the diversity of the peripheral TCR repertoire. Seeking to investigate the features of functioning of the T-cell immune system when the diversity of clonotypes is reduced, we studied the immune response of 7B transgenic mice (H-2^k) to allogeneic EL-4 lymphoma cells (H-2K^b) *in vivo*. T-lymphocytes at the transplantation site (in the peritoneal cavity) were analyzed on the 12th day after EL-4 injection. Normally, by this day, the response of cytotoxic T-cells to EL-4 lymphoma alloantigens peaks [14, 16].

Immunized 7B mice (TG+EL-4) had the absolute number of cells in the peritoneal cavity increased by two orders of magnitude compared with intact (non-immunized) transgenic mice (TG) and 20-fold compared with immunized wild-type animals (WT+EL-4) (Fig. 2A). The lavage from the immunized 7B animals contained over 90% EL-4 (Kb⁺) cells, whereas in control mice (WT+EL-4), the allogeneic tumor was almost completely eliminated by this time, and the proportion of Kb⁺ cells was only 5% (Fig. 2B).

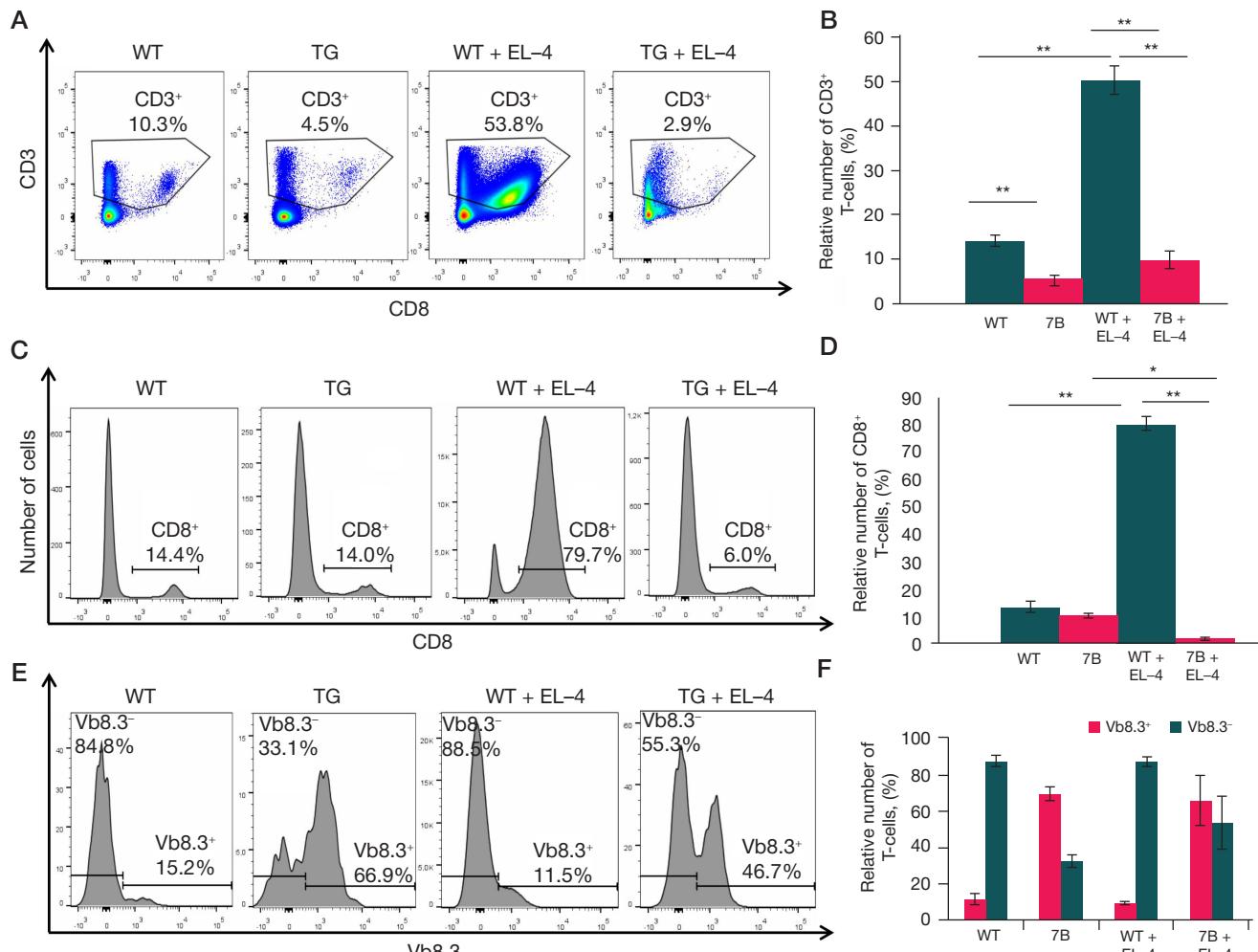
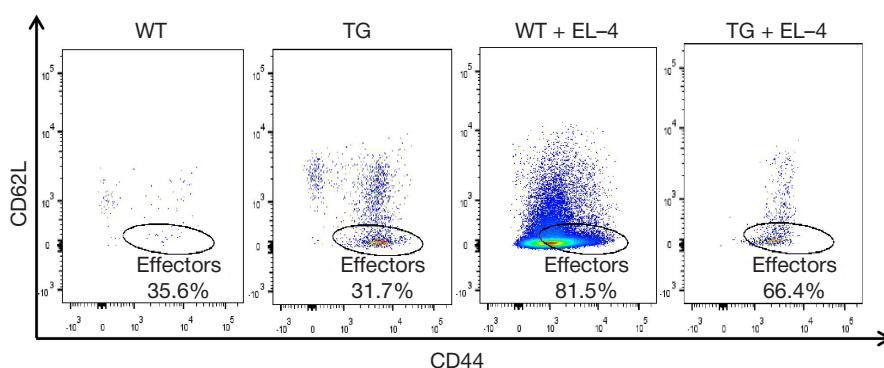
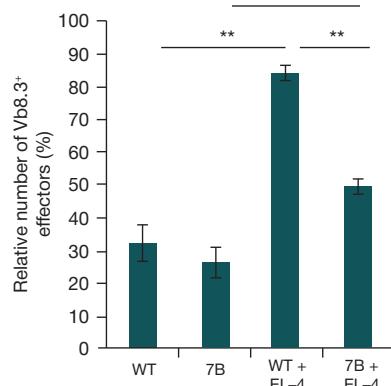
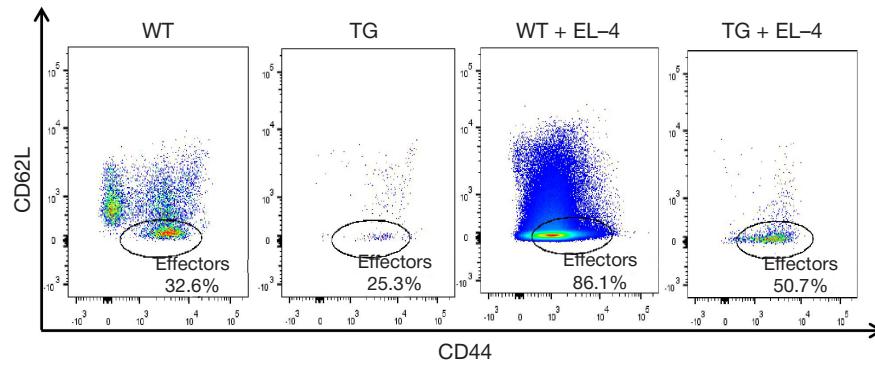
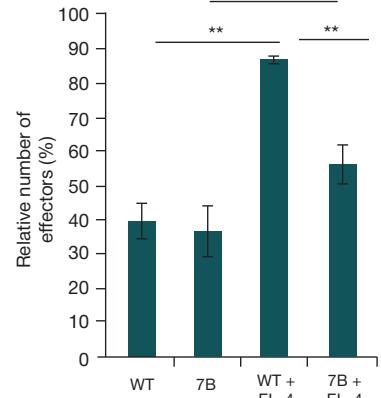

Fig. 1. Analysis of cells in the peritoneal cavity by flow cytometry (strategy). The analysis involved sequential gating of the following populations: leukocytes, gated by forward (FSC-A) and side (SSC-A) light scattering (P1) (A); single cells, gated by FSC-H vs. FSC-A (P2) (B); living cells negative as per yellow dead cell staining (P3) (C); EL-4 cells and recipient leukocytes, gated by co-expression of Kb and CD3 (P4) (D). In a population of Kb⁺CD3⁻ cells (Kb⁺), Kb-CD3⁻ recipient cells (Kb⁻) (D). E. In a population of Kb-CD3⁻ cells (Kb⁻), T-cells (CD3⁺) were gated by co-expression of CD3 and CD8 (CD3⁺CD8⁺ cells). F. Cytotoxic CD8⁺ T-cells (CD8⁺) were gated from the CD3⁻ cell population. G. In the CD8⁺ T-cell population, cells expressing endogenous β -chains of the T-cell receptor (TCR β) (Vb8.3⁻) and cells with the transgenic TCR β (Vb8.3⁺) were gated. H. For the Vb8.3⁻ and Vb8.3⁺ populations of CD8⁺ T-cells, co-expression of CD44 and CD62L markers was analyzed, and the proportion (%) of effectors (CD62L⁻CD44⁺) was determined

Fig. 2. Features of the development of EL-4 allogeneic lymphoma in 7B transgenic mice. Allogeneic lymphoma EL-4 (H-2^b) cells were injected intraperitoneally to 7B (H-2^b) transgenic mice (TG+EL-4). Non-transgenic siblings (WT+EL-4) were used as controls. On day 12 after EL-4 injection, peritoneal cells were analyzed by flow cytometry. A. The absolute number (log) of cells. ** — $p \leq 0.01$ (ANOVA, post-hoc Tukey test). B. The relative number (%) of EL-4 (Kb⁺) tumor cells. ** — $p \leq 0.01$ (Student's unpaired t -test). Data from two independent experiments ($n = 4-6$) are presented





7B mice were unable to reject allogeneic EL-4 lymphoma; as shown in Figure 3, all of them died after an average of 19 days. It should be noted that these animals endured longer than C57BL/6 mice, as for the latter, EL-4 is syngeneic and typically kills them within 10–12 days (Fig. 3). This finding indicates that in 7B transgenic mice, the response to allogeneic EL-4 lymphoma includes elimination and equilibrium phases — albeit insufficiently effective — before the tumor adapts to evade it.

The active immune response to EL-4 cells in wild-type mice (WT+EL-4) was characterized by an accumulation of T-cells, the number of which increased approximately fourfold (Fig. 4A, B), and a fivefold growth of the proportion of cytotoxic CD8⁺ cells compared with the intact control (WT) (Fig. 4C, D). Such developments were not registered in immunized transgenic mice (TG+EL-4): compared with the non-immunized control animals (TG), the relative number of T-lymphocytes (Fig. 4A, B) and CD8⁺ T-cells (Figure 4C, D) did not increase in them. However, the ratio of CD8⁺ T-cells expressing the transgenic β -chain TCR (Vb8.3⁺) or endogenous β -chains TCR (Vb8.3⁻) in the peritoneal cavity of immunized 7B mice (TG+EL-4) was approximately 1:1 compared with 2:1 in the control group (TG) (Fig. 4D, E), which indicates the involvement of both subpopulations of cytotoxic T-cells in response to EL-4 cells.

Fig. 3. Survival curves of 7B transgenic mice after EL-4 lymphoma transplantation. Parental CBA/Lac (WT) mice and C57BL/6 mice, for which EL-4 is a syngeneic tumor, were used as controls. The data from one representative experiment ($n = 4$) are presented

Fig. 4. Analysis of the immune response of 7B mice to an allogeneic tumor *in vivo*. Transgenic 7B mice (TG+EL-4) and non-transgenic siblings (WT+EL-4) were injected intraperitoneally with EL-4 allogeneic lymphoma cells. On day 12 after EL-4 injection, peritoneal cells were analyzed by flow cytometry. Intact (non-immunized) animals of the CBA/Lac (WT) parent line and the 7B (TG) transgenic line were used as controls. **A, B.** The relative number (%) of T-cells (CD3⁺). **C, D.** The relative number (%) of cytotoxic CD8⁺ T-cells. **E, F.** The relative number (%) of CD8⁺ T-cells with the transgenic β -chain of the T-cell receptor (TCR β) (Vb8.3⁺) and CD8⁺ T-cells with endogenously rearranged TCR β (Vb8.3⁻). **A, C, E.** Data from one representative staining are presented. **B, D, F.** Data from the two experiments are presented as the mean \pm standard error of the mean ($n = 4–6$). * — $p \leq 0.05$; ** — $p \leq 0.01$, ANOVA, post-hoc Tukey test

A**B****C****D**

Fig. 5. Analysis of the pool of cytotoxic effector T-cells in 7B transgenic mice in response to EL-4 allogeneic lymphoma *in vivo*. Analysis of effector CD44⁺CD62L⁻ CD8⁺ T-cells in the peritoneal cavity of 7B transgenic mice (TG+EL-4) and non-transgenic siblings (WT+EL-4) on day 12 after EL-4 injection. Intact (non-immunized) animals of the CBA/Lac (WT) parent line and the 7B (TG) transgenic line were used as controls. **A, B.** The relative number (%) of effector T-cells with transgenic TCR β (Vb8.3 $^+$). **C, D.** The relative number (%) of effector T-cells with endogenously rearranged TCR β (Vb8.3 $^+$). **A, C.** Data from one representative staining are presented. **B, D.** Data from the two experiments are presented as the mean \pm standard error of the mean ($n = 4-6$). * — $p \leq 0.05$; ** — $p \leq 0.01$, ANOVA, post-hoc Tukey test

with the corresponding CD44⁺CD62L⁻ T-cell subpopulations in intact transgenic mice (TG). Meanwhile, the relative number of Vb8.3 $^+$ and Vb8.3 $^-$ CD8⁺ effectors in the peritoneal cavity of immunized transgenic mice (TG+EL-4) was 1.5–1.7 times lower than in immunized wild-type animals (WT+EL-4) (50–56% vs. 84–86%) (Fig. 5).

DISCUSSION

The results of this study indicate the development of a weak immune response to alloantigens in 7B transgenic mice *in vivo* with the formation of a small pool of effector cytotoxic T-cells, which is consistent with the data of our early work that used a different TCR β -transgenic model [14].

Several studies have shown that TCR β -transgenic animals retain the ability to respond to various antigens, including allogeneic MHC molecules [20, 21]. These findings point to the high plasticity of the TCR repertoire, which allows compensating for the significant reduction in the diversity of clonotypes caused by the expression of the transgenic β -chain [20, 21]. However, the intensity of the immune response in TCR β -transgenic mice is lower than in wild-type animals [14, 20, 21] because of the low frequency of responding T-cell clones [20, 22]; consequently, these mice show a slower development of T-cell responses *in vivo* [21]. An important factor in this context is that the cytotoxic CD8⁺ immune response that TCR β -transgenic mice develop to the allogeneic MHC class I molecule (H-2K b) is insufficient to reject the allogeneic tumor (Figure 4, Figure 5) [14]. Thus, the response even to a strong transplant antigen

becomes ineffective due to the reduction of the diversity of the TCR repertoire.

In this regard, recognition of allogeneic tumor antigens follows the same patterns as recognition of tumor antigens in combination with self MHC molecules. The effectiveness of the antitumor response and, consequently, elimination of the transformed cells is largely determined by the mutation load of the tumor — its immunogenicity [23, 24] — and the clonal diversity of T-cells capable of recognizing tumor neoantigens or tumor-associated antigens [24, 25]. It has been shown that a high diversity of T-cell receptors (TCRs) circulating in peripheral blood is a favorable prognostic factor in several cancers, such as melanoma [26], non-small cell lung cancer [27, 28], and breast cancer [29]. In contrast, a low TCR diversity of tumor-infiltrating T-cells is associated with a poor prognosis in stomach cancer and some other malignancies [30–32].

The natural aging of the immune system, especially thymus involution and clonal expansion of memory cells in the periphery, causes a reduction in the diversity of the repertoire of T-lymphocytes [33–35], which leads to a greater predisposition of the elderly to infections and cancer [33, 36]. In addition, experimental studies involving mice have shown that at 12 months of age, the animals exhibit decreased responses to alloantigens, which are partly attributable to an age-associated narrowing of the T-cell clonotype repertoire [34, 37].

The results of this study confirm that the effectiveness of the immune response to tumor alloantigens directly depends on the breadth of the repertoire of mature T lymphocytes, as previously established [14].

CONCLUSIONS

This study shows that 7B transgenic mice develop an *in vivo* immune response that is not effective enough to eliminate allogeneic tumor cells. Due to the expression of the transgenic β -chain TCR, the number and frequency of cytotoxic T-cell clonotypes capable of recognizing allogeneic MHC molecules decrease. However, the neoplastic process in such animals progresses through all stages of immunoediting, from

ineffective stages of elimination and equilibrium to the tumor escaping from immune surveillance. The results of this study are consistent with our earlier findings; they confirm that decreased diversity of the TCR repertoire is a factor preventing rejection of the allogeneic tumor, allowing it to progress. In this case, the weak immune response that develops in the allogeneic recipient contributes to the selection of the least immunogenic malignant clones, thereby driving tumor immunoediting.

References

- Murphy K., Weaver C., Berg L. Janeway's Immunobiology. 10th ed. New York: W. W. Norton & Company, Inc, 2022.
- DeWolf S, Grinshpun B, Savage T, Lau SP, Obradovic A, Shonts B, et al. Quantifying size and diversity of the human T cell alloresponse. *JCI Insight*. 9; 3 (15): e121256.
- Tian G, Li M, Lv G. Analysis of T-Cell Receptor Repertoire in Transplantation: Fingerprint of T Cell-mediated Alloresponse. *Front Immunol*. 2022; 12: 778559.
- Lin CM, Gill RG. Direct and indirect allograft recognition: pathways dictating graft rejection mechanisms. *Curr Opin Organ Transplant*. 2016; 21 (1): 40–44.
- Kazansky DB. MHC restriction and allogeneic immune responses. *J Immunotoxicol*. 2008; 5 (4): 369–84.
- D'Orsogna LJ, Roelen DL, Doxiadis II, Claas FH. TCR cross-reactivity and allorecognition: new insights into the immunogenetics of allorecognition. *Immunogenetics*. 2012; 64 (2): 77–85.
- Duneton C, Winterberg PD, Ford ML. Activation and regulation of alloreactive T cell immunity in solid organ transplantation. *Nat Rev Nephrol*. 2022; 18 (10): 663–76.
- Link-Rachner CS, Eugster A, Rücker-Braun E, Heidenreich F, Oelschlägel U, Dahl A, et al. T-cell receptor- α repertoire of CD8+ T cells following allogeneic stem cell transplantation using next-generation sequencing. *Haematologica*. 2019; 104 (3): 622–31.
- Tian G, Song S, Zhi Y, Qiu W, Chen Y, Sun X, et al. Alloreactive T cells temporarily increased in the peripheral blood of patients before liver allograft rejection. *Liver Transpl*. 2024; 30 (12): 1250–63.
- Mendoza Rojas A, Verhoeven JGHP, de Kuiper R, Clahsen-van Groningen MC, Boer K, Hesselink DA, et al. Alloreactive T cells to Assess Acute Rejection Risk in Kidney Transplant Recipients. *Transplant Direct*. 2023; 9 (5): e1478.
- Kim JY, Lei Z, Maienschein-Cline M, Chlipala GE, Balamurugan A, McDiarmid SV, et al. Longitudinal Analysis of the T-cell Receptor Repertoire in Graft-infiltrating Lymphocytes Following Hand Transplantation. *Transplantation*. 2021; 105 (7): 1502–9.
- Obata F, Yoshida K, Ikeda Y, Ohkubo M, Saito T, Takeuchi Y, et al. Clonality analysis of T cells mediating acute and chronic rejection in kidney allografts. *Transpl Immunol*. 2004; 13 (3): 233–7.
- Zeng G, Huang Y, Huang Y, Lyu Z, Lesniak D, Randhawa P. Antigen-Specificity of T Cell Infiltrates in Biopsies With T Cell-Mediated Rejection and BK Polyomavirus Viremia: Analysis by Next Generation Sequencing. *Am J Transplant*. 2016; 16 (11): 3131–8.
- Silaeva YY, Grinenko TS, Vagida MS, Kalinina AA, Khromykh LM, et al. Immune selection of tumor cells in TCR β -chain transgenic mice. *J Immunotoxicol*. 2014; 11 (4): 393–9.
- Grinenko TS, Pobezinskaya EL, Pobezinskii LA, Baturina IA, Zvezdova ES, Kazanskiy DB. Suppression of primary allogeneic response by CD8+ memory cells. *Bull Exp Biol Med* 2005; 140 (5): 545–9.
- Zamkova M, Kalinina A, Silaeva Y, Persiyantseva N, Bruter A, Deikin A, et al. Dominant role of the α -chain in rejection of tumor cells bearing a specific alloantigen in TCR α transgenic mice and in vitro experiments. *Oncotarget*. 2019; 10: 4808–21.
- Pobezinskij LA, Pobezinskaya EL, Grinenko TS, Chervonskij AV, Kazanskiy DB. Perifericheskij pul T-kletok CD8+ soderzhit limfocity s antigenspecificeskimi receptorami, raspoznayushchimi singennyye molekuly MNS klassa II. *Ontogenet*. 2004; 35 (3): 183–9.
- Silaeva Y, Kalinina A, Vagida M, Khromykh LM, Deikin AV, Ermolkevich TG, et al. Decrease in pool of T lymphocytes with surface phenotypes of effector and central memory cells under influence of TCR transgenic β -chain expression. *Biochemistry (Moscow)*. 2013; 78: 549–59.
- Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, et al. SRplot: A free online platform for data visualization and graphing. *PLoS ONE*. 2023; 18 (11): e0294236.
- Listman JA, Rimm IJ, Wang Y, Geller MC, Tang JC, Ho S, et al. Plasticity of the T cell receptor repertoire in TCR beta-chain transgenic mice. *Cell Immunol*. 1996; 167 (1): 44–55.
- Ewing C, Allan W, Daly K, Hou S, Cole GA, Doherty PC, et al. Virus-specific CD8+ T-cell responses in mice transgenic for a T-cell receptor beta chain selected at random. *J Virol*. 1994; 68 (5): 3065–70.
- Jenkins MK, Moon JJ. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. *J Immunol*. 2012; 88 (9): 4135–40.
- Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. *Cancer Cell*. 2021; 39 (2): 154–73.
- Aran A, Garrigós L, Curiel G, Cortés J, Martí M. Evaluation of the TCR Repertoire as a Predictive and Prognostic Biomarker in Cancer: Diversity or Clonality? *Cancers (Basel)*. 2022; 14 (7): 1771.
- Wilczyński JR, Nowak M. Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. In: Klink M., Szulc-Kielbik I, editors. *Interaction of Immune and Cancer Cells*. Experientia Supplementum, vol 113: Springer, 2022.
- Charles J, Mouret S, Challende I, Leccia MT, De Fraipont F, Perez S, et al. T-cell receptor diversity as a prognostic biomarker in melanoma patients. *Pigment Cell Melanoma Res*. 2020; 33 (4): 612–24.
- Qian L, Zhaohui Z, Yaping X, Zhentian L, Zhentao L, Qiqi W, et al. Blood T cell diversity associated with the prognosis of advanced non-small cell lung carcinoma treated with first-line pemetrexed based chemotherapy. *Thorac Cancer*. 2021; 12 (7): 997–1005.
- Abed A, Beasley AB, Reid AL, Law N, Calapre L, Millward M, et al. Circulating pre-treatment T-cell receptor repertoire as a predictive biomarker in advanced or metastatic non-small-cell lung cancer patients treated with pembrolizumab alone or in combination with chemotherapy. *ESMO Open*. 2023; 8 (6): 102066.
- Manuel M, Tredan O, Bachelot T, Clapison G, Courtier A, Parmentier G, et al. Lymphopenia combined with low TCR diversity (divpenia) predicts poor overall survival in metastatic breast cancer patients. *Oncoimmunology*. 2012; 1 (4): 432–40.
- Jia Q, Zhou J, Chen G, Shi Y, Yu H, Guan P, et al. Diversity index of mucosal resident T lymphocyte repertoire predicts clinical prognosis in gastric cancer. *Oncoimmunology*. 2015; 4 (4): e1001230.
- Jin YB, Luo W, Zhang GY, Lin KR, Cui JH, Chen XP, et al. TCR repertoire profiling of tumors, adjacent normal tissues, and peripheral blood predicts survival in nasopharyngeal carcinoma. *Cancer Immunol Immunother*. 2018; 67 (11): 1719–30.
- Cui JH, Lin KR, Yuan SH, Jin YB, Chen XP, Su XK, et al. TCR Repertoire as a Novel Indicator for Immune Monitoring and Prognosis Assessment of Patients With Cervical Cancer. *Front Immunol*. 2018; 9: 2729.

33. Fulop T, Larbi A, Pawelec G, Khalil A, Cohen AA, Hirokawa K, et al. Immunology of Aging: the Birth of Inflammaging. *Clin Rev Allergy Immunol.* 2023; 64 (2): 109–22.
34. Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB, et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. *J Immunol.* 2014; 192 (6): 2689–98.
35. Shevyrev DV, Tereshchenko VP, Kozlov VA. Gomeostaticeskaya

proliferaciya: ot normy k patologii. *Rossijskij immunologicheskij zhurnal.* 2018; 21 (2): 91–105. Russian.

36. Montégut L, López-Otín C, Kroemer G. Aging and cancer. *Mol Cancer.* 2024; 23 (1): 106.
37. Kalinina AA, Ziganshin RK, Silaeva YY, Sharova NI, Nikonova MF, Persiyantseva NA, et al. Physiological and Functional Effects of Dominant Active TCR α Expression in Transgenic Mice. *Int J Mol Sci.* 2023; 24 (7): 6527.

Литература

1. Murphy K., Weaver C., Berg L. *Janeway's Immunobiology.* 10th ed. New York: W. W. Norton & Company, Inc, 2022.
2. DeWolf S, Grinspun B, Savage T, Lau SP, Obradovic A, Shotts B, et al. Quantifying size and diversity of the human T cell alloresponse. *JCI Insight.* 9; 3 (15): e121256.
3. Tian G, Li M, Lv G. Analysis of T-Cell Receptor Repertoire in Transplantation: Fingerprint of T Cell-mediated Alloresponse. *Front Immunol.* 2022; 12: 778559.
4. Lin CM, Gill RG. Direct and indirect allograft recognition: pathways dictating graft rejection mechanisms. *Curr Opin Organ Transplant.* 2016; 21 (1): 40–44.
5. Kazansky DB. MHC restriction and allogeneic immune responses. *J Immunotoxicol.* 2008; 5 (4): 369–84.
6. D'Orsogna LJ, Roelen DL, Doxiadis II, Claas FH. TCR cross-reactivity and allorecognition: new insights into the immunogenetics of allorecognition. *Immunogenetics.* 2012; 64 (2): 77–85.
7. Duneton C, Winterberg PD, Ford ML. Activation and regulation of alloreactive T cell immunity in solid organ transplantation. *Nat Rev Nephrol.* 2022; 18 (10): 663–76.
8. Link-Rachner CS, Eugster A, Rücker-Braun E, Heidenreich F, Oelschlägel U, Dahl A, et al. T-cell receptor- α repertoire of CD8 $+$ T cells following allogeneic stem cell transplantation using next-generation sequencing. *Haematologica.* 2019; 104 (3): 622–31.
9. Tian G, Song S, Zhi Y, Qiu W, Chen Y, Sun X, et al. Alloreactive T cells temporarily increased in the peripheral blood of patients before liver allograft rejection. *Liver Transpl.* 2024; 30 (12): 1250–63.
10. Mendoza Rojas A, Verhoeven JGHP, de Kuiper R, Clahsen-van Groningen MC, Boer K, Hesselink DA, et al. Alloreactive T cells to Assess Acute Rejection Risk in Kidney Transplant Recipients. *Transplant Direct.* 2023; 9 (5): e1478.
11. Kim JY, Lei Z, Maienschein-Cline M, Chilpala GE, Balamurugan A, McDiarmid SV, et al. Longitudinal Analysis of the T-cell Receptor Repertoire in Graft-infiltrating Lymphocytes Following Hand Transplantation. *Transplantation.* 2021; 105 (7): 1502–9.
12. Obata F, Yoshida K, Ikeda Y, Ohkubo M, Saito T, Takeuchi Y, et al. Clonality analysis of T cells mediating acute and chronic rejection in kidney allografts. *Transpl Immunol.* 2004; 13 (3): 233–7.
13. Zeng G, Huang Y, Huang Y, Lyu Z, Lesniak D, Randhawa P. Antigen-Specificity of T Cell Infiltrates in Biopsies With T Cell-Mediated Rejection and BK Polyomavirus Viremia: Analysis by Next Generation Sequencing. *Am J Transplant.* 2016; 16 (11): 3131–8.
14. Silaeva YY, Grinenko TS, Vagida MS, Kalinina AA, Khromykh LM, et al. Immune selection of tumor cells in TCR β -chain transgenic mice. *J Immunotoxicol.* 2014; 11 (4): 393–9.
15. Grinenko TS, Pobezinskaya EL, Pobezinskii LA, Baturina IA, Zvezdova ES, Kazanskii DB. Suppression of primary allogeneic response by CD8 $+$ memory cells. *Bull Exp Biol Med* 2005; 140 (5): 545–9.
16. Zamkova M, Kalinina A, Silaeva Y, Persiyantseva N, Bruter A, Deikin A, et al. Dominant role of the α -chain in rejection of tumor cells bearing a specific alloantigen in TCR α transgenic mice and in vitro experiments. *Oncotarget.* 2019; 10: 4808–21.
17. Pobezinskij LA, Pobezinskaya EL, Grinenko TS, Chervonskij AV, Kazanskij DB. Perifericheskij pul T-kletok CD8 $+$ soderzhit limfocity s antigenspecificeskimi receptorami, raspoznayushchimi singennyye molekuly MNS klassa II. *Ontogenez.* 2004; 35 (3): 183–9.
18. Silaeva Y, Kalinina A, Vagida M, Khromykh LM, Deikin AV, Ermolkevich TG, et al. Decrease in pool of T lymphocytes with surface phenotypes of effector and central memory cells under influence of TCR transgenic β -chain expression. *Biochemistry (Moscow).* 2013; 78: 549–59.
19. Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, et al. SRplot: A free online platform for data visualization and graphing. *PLoS ONE.* 2023; 18 (11): e0294236.
20. Listman JA, Rimm IJ, Wang Y, Geller MC, Tang JC, Ho S, et al. Plasticity of the T cell receptor repertoire in TCR beta-chain transgenic mice. *Cell Immunol.* 1996; 167 (1): 44–55.
21. Ewing C, Allan W, Daly K, Hou S, Cole GA, Doherty PC, et al. Virus-specific CD8 $+$ T-cell responses in mice transgenic for a T-cell receptor beta chain selected at random. *J Virol.* 1994; 68 (5): 3065–70.
22. Jenkins MK, Moon JJ. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. *J Immunol.* 2012; 88 (9): 4135–40.
23. Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. *Cancer Cell.* 2021; 39 (2): 154–73.
24. Aran A, Garrigós L, Curiel-García G, Cortés J, Martí M. Evaluation of the TCR Repertoire as a Predictive and Prognostic Biomarker in Cancer: Diversity or Clonality? *Cancers (Basel).* 2022; 14 (7): 1771.
25. Wilczyński JR, Nowak M. Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. In: Klink M., Szulc-Kielbik I, editors. *Interaction of Immune and Cancer Cells. Experientia Supplementum*, vol 113: Springer, 2022.
26. Charles J, Mouret S, Challende I, Leccia MT, De Fraipont F, Perez S, et al. T-cell receptor diversity as a prognostic biomarker in melanoma patients. *Pigment Cell Melanoma Res.* 2020; 33 (4): 612–24.
27. Qian L, Zhaohui Z, Yaping X, Zhenhui L, Zhenhao L, Qiqi W, et al. Blood T cell diversity associated with the prognosis of advanced non-small cell lung carcinoma treated with first-line pemetrexed based chemotherapy. *Thorac Cancer.* 2021; 12 (7): 997–1005.
28. Abed A, Beasley AB, Reid AL, Law N, Calapre L, Millward M, et al. Circulating pre-treatment T-cell receptor repertoire as a predictive biomarker in advanced or metastatic non-small-cell lung cancer patients treated with pembrolizumab alone or in combination with chemotherapy. *ESMO Open.* 2023; 8 (6): 102066.
29. Manuel M, Tredan O, Bachelot T, Clapison G, Courtier A, Parmentier G, et al. Lymphopenia combined with low TCR diversity (divipenia) predicts poor overall survival in metastatic breast cancer patients. *Oncimmunology.* 2012; 1 (4): 432–40.
30. Jia Q, Zhou J, Chen G, Shi Y, Yu H, Guan P, et al. Diversity index of mucosal resident T lymphocyte repertoire predicts clinical prognosis in gastric cancer. *Oncimmunology.* 2015; 4 (4): e1001230.
31. Jin YB, Luo W, Zhang GY, Lin KR, Cui JH, Chen XP, et al. TCR repertoire profiling of tumors, adjacent normal tissues, and peripheral blood predicts survival in nasopharyngeal carcinoma. *Cancer Immunol Immunother.* 2018; 67 (11): 1719–30.
32. Cui JH, Lin KR, Yuan SH, Jin YB, Chen XP, Su XK, et al. TCR Repertoire as a Novel Indicator for Immune Monitoring and Prognosis Assessment of Patients With Cervical Cancer. *Front Immunol.* 2018; 9: 2729.
33. Fulop T, Larbi A, Pawelec G, Khalil A, Cohen AA, Hirokawa K, et al. Immunology of Aging: the Birth of Inflammaging. *Clin Rev Allergy Immunol.* 2023; 64 (2): 109–22.
34. Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB, et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized

sequence profiling. *J Immunol.* 2014; 192 (6): 2689–98.

35. Shevrev DV, Tereshchenko VP, Kozlov VA. Gomeostaticheskaya proliferaciya: ot normy k patologii. *Rossijskij immunologicheskij zhurnal.* 2018; 21 (2): 91–105. Russian.

36. Montégut L, López-Otín C, Kroemer G. Aging and cancer. *Mol Cancer* 2024; 23 (1): 106.

37. Kalinina AA, Ziganshin RK, Silaeva YY, Sharova NI, Nikonova MF, Persiyantseva NA, et al. Physiological and Functional Effects of Dominant Active TCR α Expression in Transgenic Mice. *Int J Mol Sci.* 2023; 24 (7): 6527.