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ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ    НЕВРОЛОГИЯ

А. В. Иванова1,2      , Н. С. Чмелюк1,2, И. А. Кузьмичев1, М. И. Шиляева1, М. А. Абакумов1,2

СРАВНИТЕЛЬНАЯ ВИЗУАЛИЗАЦИЯ СВЯЗЫВАНИЯ ТЕТРАПЕПТИДОВ HAEE-CY5 И ЕЕАН-СУ5 
C АГРЕГАТАМИ Aβ НА КЛЕТКАХ SH-SY5Y

В связи с высокой диагностической значимостью β-амилоидных агрегатов при болезни Альцгеймера особый интерес представляют целевые лиганды, 

способные к специфическому связыванию с патологическими агрегатами Aβ. Целью исследования было провести методом конфокальной микроскопии 

сравнительную характеристику связывающей способности тетрапептидов HAEE-Сy5 (Ac-His-Ala-Glu-Glu-Gly-Gly-Gly-Gly-Lys(ε-Cy5)-NH2) и EEAH-Cy5 

(Ac-Glu-Glu-Ala-His-Gly-Gly-Gly-Gly-Lys(ε-Cy5)-NH2) с агрегатами Aβ на клеточной линии нейробластомы человека SH-SY5Y. Показано, что тетрапептид HAEE-

Cy5 демонстрирует специфическое связывание с образованием характерных цитоплазматических скоплений и четкой колокализации с амилоидными 

агрегатами, в то время как пептид EEAH-Cy5 с обращенной последовательностью полностью утрачивает способность к связыванию. Количественный 

анализ подтвердил высокую специфичность связывания HAEE-Cy5 с агрегатами Aβ (коэффициент колокализации Мандерса 0.58 ± 0.03). Установлено, 

что N-концевое положение гистидина является критическим детерминантом специфичности взаимодействия. Результаты работы открывают перспективы 

применения пептида HAEE в качестве платформы для разработки целевых диагностических систем визуализации амилоидной патологии.
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COMPARATIVE IMAGING OF THE HAEE-CY5 AND ЕЕАН-СУ5 TETRAPEPTIDE BINDING 
TO THE Aβ AGGREGATES ON THE SH-SY5Y CELLS

Due to high diagnostic value of β-amyloid aggregates, the target ligands capable of specific binding to abnormal Aβ aggregates are of special interest. The study 

aimed to perform comparative characterization of the HAEE-Сy5 (Ac-His-Ala-Glu-Glu-Gly-Gly-Gly-Gly-Lys(ε-Cy5)-NH2) and EEAH-Cy5 (Ac-Glu-Glu-Ala-His-Gly-

Gly-Gly-Gly-Lys(ε-Cy5)-NH2) tetrapeptide capability of binding to the Aβ aggregates in the SH-SY5Y human neuroblastoma cell line by confocal microscopy. It 

has been shown that the HAEE-Cy5 tetrapeptide demonstrates specific binding yielding typical cytoplasmic clusters and clear co-localization with the amyloid 

aggregates, while the EEAH-Cy5 peptide with the inverted sequence totally loses the binding capability. Quantification has confirmed high specificity of the HAEE-

Cy5 binding to the Aβ aggregates (Manders' colocalization coefficient 0.58 ± 0.03). It has been found that the histidine N-terminal position is a critical determinant 

of the interaction specificity. The findings offer the prospects of using the HAEE peptide as a platform for the development of targeted disgnostic systems for 

amyloid disorder imaging.
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Болезнь Альцгеймера (БА) — наиболее распространенная 
в мире нейродегенеративная патология, которая обычно 
приводит к гибели нейронов и атрофии головного мозга, 
сопровождается накоплением патологических отложений: 
сенильных бляшек, состоящих из агрегированного 
β-амилоида (Aβ) и нейрофибриллярных клубков, 
образованных гиперфосфорилированным тау-белком [1, 2].
Несмотря на многолетние исследования, амилоидная 
гипотеза остается одной из центральных в объяснении 
патогенеза БА. Накопление олигомерных форм Aβ и их 
последующая агрегация в зрелые, стабильные фибриллы 
считаются ключевым событием, запускающим каскад 
нейротоксичности и нейровоспаления [3–5], поскольку 
агрегаты Aβ являются основным структурным компонентом 
сенильных бляшек, что делает их приоритетной мишенью 
для разработки методов диагностики и терапии. Одним 
из перспективных подходов является поиск соединений, 
способных ингибировать агрегацию Aβ. В настоящее время 
разрабатывают различные классы таких соединений, 
включая малые молекулы [6, 7], моноклональные антитела 
(адуканумаб, леканемаб) [8, 9], пептиды [10], природные 
лиганды [11], многофунгкциональные гибридные 
молекулы [12], однако многие из них сталкиваются с 
проблемами низкой биодоступности, ограниченной 
эффективности на поздних стадиях БА или серьезными 
побочными эффектами, такими как ARIA (аномалии 
визуализации, связанные с амилоидом) в случае 
антительной терапии [13, 14]. В этом контексте особый 
интерес представляют короткие пептиды, сочетающие 
целенаправленное действие с потенциально лучшей 
проникающей способностью. Таким соединением-
кандидатом является тетрапептид НАЕЕ. По некоторым 
данным [15], HAEE действует как специфический 
молекулярный инструмент, избирательно связывающийся 
с металлсвязывающим доменом пептида Aβ (11EVHH14), 
формируя в присутствии Zn²⁺ стабильный комплекс. 
Это взаимодействие, подтвержденное методами 
поверхностного плазмонного резонанса, ядерного 
магнитного резонанса и молекулярного моделирования, 
значительно нарушает Zn²⁺-зависимую димеризацию 
мономеров Aβ, тем самым препятствуя образованию 
токсичных олигомеров. Важным подтверждением 
эффективности HAEE стали эксперименты in vivo на 
гематоэнцефалическом барьере (ГЭБ): пептид не только 
подавлял Zn²⁺-индуцированное накопление амилоида, 
но и полностью предотвращал связанные с ним 
патологические фенотипы, включая паралич и сокращение 
продолжительности жизни трансгенных нематод [15]. 
В данных экспериментах не было зафиксировано 
признаков токсичности пептида, что указывает на его 
благоприятный профиль безопасности на этой модельной 
системе. Кроме того, для HAEE было показано еще одно 
ключевое свойство: фармакокинетические исследования 
и молекулярное моделирование указывают на его 
способность преодолевать ГЭБ [15]. Следует отметить, 
что НАЕЕ представляет собой пептид, происходящий 
из последовательности α4-субъединицы никотинового 
ацетилхолинового рецептора (nAChRα4) [16]. Таким 
образом, НАЕЕ обладает свойствами уникального 
кандидата для терапии БА: он имеет установленный 
механизм действия, направленный на ключевое звено 
патогенеза, и демонстрирует эффективность на уровне 
целого организма. Для дальнейшего подтверждения этого 
механизма простым и наглядным методом может служить 
прямое обнаружение связывания НАЕЕ с агрегатами Aβ 

в условиях клеточных культур. Для решения этой задачи 
одним из наиболее популярных и доступных методов 
является флуоресцентная микроскопия, в частности, с 
применением иммуноцитохимического анализа.

Таким образом, цель данной работы — провести 
прямую визуализацию и подтверждение связывания 
флуоресцентного конъюгата НАЕЕ-Су5 с агрегатами 
Aβ на клеточной линии нейробластомы человека SH-SY5Y 
с помощью флуоресцентной микроскопии для оценки 
его специфичности и перспектив использования пептида 
НАЕЕ в качестве целевого лиганда для диагностики и 
терапии БА.

МАТЕРИАЛЫ И МЕТОДЫ

Все эксперименты были выполнены в лаборатории отдела 
медицинских нанобиотехнологий Научно-исследовательского 
института трансляционной медицины РНИМУ имени 
Н. И. Пирогова. Конфокальную микроскопию проводили 
в лаборатории «Биомедицинские наноматериалы» 
Института биоинженерии Университета науки и 
технологий МИСИС.

В эксперименте исследовали соединения: HAEE-Cy5 
(Ac-His-Ala-Glu-Glu-Gly-Gly-Gly-Gly-Lys(ε-Cy5)-NH

2
, ЕЕАН-

Cy5 (Ac-Glu-Glu-Ala-His-Gly-Gly-Gly-Gly-Lys(ε-Cy5)-NH
2
, 

Су5-NH
2
. Исследуемые пептиды HAEE-Cy5 и EEAH-Cy5 

(чистота > 95% по данным ВЭЖХ) были синтезированы 
и предоставлены лабораторией отдела медицинских 
нанобиотехнологий НИИ трансляционной медицины 
РНИМУ имени Н. И. Пирогова. Пептиды состоят из 
тетрапептидной «головки» (HAEE или EEAH), соединенной 
через линкер из четырех остатков глицина (GGGG) с 
флуоресцентным красителем Cy5. 

Остаток L-лизина (K) в линкере обеспечивает точку 
конъюгации для красителя. Структурные формулы 
исследуемых соединений представлены на рис. 1. 

Лиофилизованные пептиды растворяли в стерильной 
деионизованной воде в концентрации 5–10 мМ и хранили 
аликвоты растворов при –20 °C не более 3 месяцев. Перед 
внесением пептидов на клетки растворы разводили 
в среде для культивирования клеток DMEM/F12, не 
содержащей эмбриональную телячью сыворотку (ФБС), до 
концентрации 5 мкМ. 

Культивирование клеток линии SH-SY5Y

Клеточную линию нейробластомы человека SH-SY5Y (ATCC, 
США) выращивали во флаконах для культивирования 
в среде, состоящей из DMEM/F12 (ServiceBio, Китай) с 
добавлением 10%-й ФБС («Cytiva (GE Healthcare Life Sciences 
HyClone)», США), смеси антибиотиков (пенициллин — 
100 мкг/мл, стрептомицин — 100 мкг/мл) (ServiceBio, Китай) 
и L-глутамина (100мМ) (ServiceBio, Китай), при 37 °C в 
атмосфере 5% CO

2
.

Препараты бета-амилоида

Лиофилизованный Аβ (Amyloid β-Protein (1–42) (E-PP-0428),
Elabscience, Китай) растворяли в 1% NH

4
OH до 

концентрации 1 мг/мл на ультразвуковой бане без нагрева 
в течение 10 мин. Далее раствор аликвотировали по 
10 мкл и хранили при –80 °C. Перед нанесением на клетки 
раствор вновь подвергали обработке ультразвуком 
в течение 30 мин при 37 °C в конечной концентрации 
(20 мкг/мл).
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Рис. 1. Структурные формулы исследуемых конъюгированных пептидов

Иммунофлуоресцентный анализ

Для исследования локализации соединений SH-SY5Y 
высаживали в лунки 24-луночного планшета по 200 × 103 
клеток на лунку. Через 24 ч клетки были обработаны  
препаратами Aβ (20 мкг/мл) в среде, не содержащей ФБС, и 
инкубировались 4 ч. После этого клетки дважды отмывали 
раствором Хенкса и добавляли исследуемые соединения 
(HAEE-Cy5, EEAH-Cy5, NH

2
-Cy5) в концентрации 5 мкМ 

и инкубировали 2 ч. Затем клетки подвергали фиксации 
в течение 15 мин в 4%-м параформальдегиде при 
+4 °C. Пермеабилизацию проводили в блокирующем 
буфере 0,2%-го Твин-20, 0,2%-м Тритон Х-100 и 2%-й 
козьей сыворотке в течение 30 мин при комнатной 
температуре. Далее проводили инкубацию в течение 
60 мин с первичными антителами (антитела мыши IgG1 
против человеческого белка бета-амилоида, abI, clone 
6E10 BioLegend) в разведении 1:100 000 (0,01 мкг/мл) 
в буфере (0,2% Твин-20, 0,2% Тритон Х-100, 0,2% козья 
сыворотка, ФБС). После этого клетки трижды отмывали 
раствором 0,2%-го Твин-20, 0,2%-го Тритона Х-100 по 
5 мин. Далее клетки инкубировали со вторичными атителами 
(abII, Антитела козы против IgG(H+L), конъюгированные с 
alexa 488, E-AB-1056, Elabscience, Китай). Инкубация со 
вторичными антителами также составляла 60 мин, после 
клетки трижды промывали раствором 0,2%-го Твин-20, 
0,2%-го Тритона Х-100 по 5 мин и окрашивали ядерным 
красителем DAPI.

Конфокальная микроскопия

Визуализацию клеток проводили с помощью микроскопа 
Nikon Eclipse Ti2 (Nikon, Токио, Япония), оснащенного лазерной 
сканирующей системой (ThorLabs, Ньютон, Нью-Джерси, 
США) и объективом Apo 60×/0.5-1.25 с масляной иммерсией. 
Сканирование проводили с помощью программного 
обеспечения ThorImageLS (версия 2.4) (Thorlabs, Ньютон, Нью-
Джерси, США); для обработки изображений использовали 
программное обеспечение Fiji 2.9.0.

Статистический анализ

Колокализацию изображений в каналах alexa488 и Cy5 
рассчитывали, используя программное обеспечение Fiji и 

коэффициент Мандерса; для анализа использовали n = 6 
изображений.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Для подтверждения специфичности иммунофлуоресцентного 
окрашивания на клетках линии SH-SY5Y был проведен ряд 
контрольных экспериментов (рис. 2). При использовании 
только вторичных антител, конъюгированных флуоресцентной 
меткой alexa 488 (abII), значимый флуоресцентный сигнал 
не детектировался. Аналогично инкубация клеток с Aβ в 
отсутствие первичных антител (abI) не приводила к появлению 
специфического окрашивания. Обработка клеток только abI 
или abII без Aβ не вызывала значимого флуоресцентного 
сигнала. Интенсивное флуоресцентное окрашивание 
наблюдали исключительно при одновременном 
присутствии Aβ, abI и abII и соответствовало ожидаемой 
локализации целевых антигенов. Полученные результаты 
подтверждают, что специфическое окрашивание требует 
наличия всех компонентов системы и доказывают 
специфичность использованных антител.

Далее была исследована локализация НАЕЕ-
Cy5 и ЕЕАН-Сy5 на клетках. В ходе контрольного 
эксперимента с использованием свободного красителя 
Cy5-NH

2
 выявлена его неспецифическая интернализация, 

проявляющаяся в виде диффузного сигнала на мембране 
и в цитоплазме клеток. Частичную локализацию столь 
гидрофобного соединения в цитоплазме можно объяснить 
пермеабилизцией клеток при проведении анализа. 
Напротив, для соединений ЕЕАН-Сy5 и НАЕЕ-Cy5 
наблюдали интенсивный и структурно организованный 
сигнал, качественно отличающийся от контроля: он 
характеризовался выраженным мембраносвязанным 
компонентом и формированием дискретных скоплений в 
цитоплазме (рис. 3). Это свидетельствует о специфическом 
взаимодействии исследуемых соединений с клеточными 
структурами, которое не сводится к неспецифическому 
накоплению красителя.

В связи с обнаруженной специфической локализацией 
ЕЕАН-Cy5 и НАЕЕ-Cy5 была непосредственно проверена 
их способность к связыванию с агрегатами Aβ. Анализ 
конфокальных микрофотографий продемонстрировал 
четкую и интенсивную колокализацию сигнала НАЕЕ-Cy5 
(красный) с сигналом от отложений Aβ (alexa 488, зеленый), 

1 2
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визуализируемую в виде обширных желтых областей 
на совмещенном изображении (рис. 4), что однозначно 
указывает на высокоаффинное связывание тетрапептида 
НАЕЕ-Cy5 с амилоидными агрегатами. В отличие от НАЕЕ-
Cy5, для пептида ЕЕАН-Cy5 не было зафиксировано 
значимого сигнала в канале Cy5, что свидетельствует о 
его неспособности к специфическому взаимодействию 
с изучаемой мишенью. Исходный краситель Cy5 хоть 
и проявлял некоторую возможность связывания с 
амилоидными отложениями, в большей степени был 
локализован неспецифически, что также подтверждает 
высокое сродство HAEE-Cy5 к белковым агрегатам Aβ. Для 
дополнительного подтверждения колокализации каналов 
был расчитан коэффициент Мандерса между каналами 
изображений агрегатов Aβ и исследуемыми соединениями 
для полученных изображений: наиболее высоким значение 
коэффициента оказалось для соединения HAEE-Сy5 и 
агрегатов Aβ (0.58 ± 0.03), в то время как между каналами 
Aβ и Cy5 и каналами Aβ и ЕЕАН-Cy5 значения составляли 
0.22 ± 0.05 и 0.19 ± 0.02 соответственно, что говорит об 
отсутствии колокализации Cy5 и ЕЕАН-Cy5 и гораздо 
более высокой степени связывания HAEE-Cy5 с Aβ. Крайне 
невысокий сигнал флуоресценции от ЕЕАН-Cy5 может 
быть связан с его низкой способностью удерживаться 
на агрегатах Aβ и на других компартментах клетки. В 
то же время сигнал от Cy5 является значительным и 
усиливается в областях агрегатов Aβ, однако значительная 
часть флуоресценции распределена в области мембраны 
и цитоплазмы, что говорит о низкой специфичности 
связывания Cy5 с Aβ.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проведенное исследование позволило выявить 
фундаментальные различия в способности НАЕЕ-Cy5 и 
ЕЕАН-Cy5 к связыванию с агрегатами Aβ на клеточной 
линии SH-SY5Y, что, по-видимому, обусловлено их 
структурными особенностями. Несмотря на идентичный 
аминокислотный состав, обращенная последовательность 
ЕЕАН-Cy5 привела к полной потере функциональной 
активности, в то время как НАЕЕ-Cy5 продемонстрировал 
высокую специфичность к исследуемой мишени. 
Полученные данные позволяют предположить, что 
N-концевое положение гистидина в последовательности 
HAEE-Cy5 является критическим для формирования 
специфических взаимодействий с Aβ. Наши данные 
однозначно демонстрируют, что перенос гистидина (His, H) 
с первой на четвертую позицию в тетрапептидной «головке» 
лиганда приводит к резкому снижению способности к 
связыванию с Aβ. Известно, что N-концевой домен пептида 
Aβ содержит основные центры для связывания, а именно 
остатки His6, His13, His14, которые являются хорошими 
σ-донорами и участвуют в координации с металлами [17], а 
также ароматические остатки Phe4 и Tyr10, ответственные 
за π-π взаимодействия [17, 18]. Можно предположить, 
что гистидин в составе НАЕЕ участвует в аналогичных 
взаимодействиях с этими сайтами. В случае неактивного 
пептида ЕЕАН присутствие двух отрицательно заряженных 
остатков глутаминовой кислоты (Glu, E) в N-концевой 
позиции, а также присутствие флуоресцентного 
красителя Су5 на ε-конце лизина (Lys, K) могут вызывать 

Рис. 2. Контроль специфичности иммунофлуоресцентного окрашивания в клетках линии SH-SY5Y. Совмещение каналов демонстрирует локализацию 
целевых антигенов, меченных alexa 488 (зеленый) на агрегатах Aβ. Ядра клеток визуализированы с помощью DAPI (синий). Масштабный отрезок 20 мкм

С
о

вм
ещ

ен
но

е 
из

о
б

р
аж

ен
ие

D
A

P
I

al
ex

a4
88

abl + abll abll агрегаты + abll агрегаты + abl + abll



196 ВЕСТНИК РГМУ   6, 2025   VESTNIK.RSMU.PRESS   DOI: 10.24075/VRGMU.2025.061| | |

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ    НЕВРОЛОГИЯ

сворачивание пептидной цепи или создавать стерические 
препятствия, нарушающие пространственную ориентацию 
и доступность ключевого остатка гистидина. В такой 
конфигурации гистидин может быть стерически недоступен 
для взаимодействия с сайтами связывания на Aβ.

Количественным подтверждением высокой специфичности 
связывания НАЕЕ-Cy5 с амилоидными агрегатами 
служит расчет коэффициента колокализации Мандерса. 
Значение коэффициента 0.58 ± 0.03 для пары НАЕЕ-Cy5 / Aβ
существенно превышает значения для контрольных 
соединений (Cy5-NH

2
 / Aβ и ЕЕАН-Cy5 / Aβ), которые были 

близки к нулю. Этот количественный анализ убедительно 
свидетельствует, что интенсивный сигнал колокализации 
не является случайным и подтверждает высокое сродство 
пептида НАЕЕ именно к целевым Aβ-агрегатам, что 
полностью согласуется с визуальными наблюдениями 
и демонстрирует критическую важность правильной 
последовательности аминокислот для эффективного 
взаимодействия.

Отсутствие флуоресцентного сигнала от ЕЕАН-Cy5 при 
четкой детекции связывания HAEE-Cy5 с внеклеточными 
агрегатами Aβ указывает на его неспособность к 

специфическому взаимодействию с мишенью. Это различие, 
обусловленное неоптимальной первичной структурой 
контрольного пептида, может быть следствием нескольких 
факторов: нарушения связывания с Aβ, повышенной 
чувствительности к протеолитической деградации, 
ухудшенной клеточной проницаемости или ускоренного 
выведения из клетки. Таким образом, в отличие от HAEE-
Cy5, пептид ЕЕАН-Cy5 не выполняет целевую функцию, 
что подтверждает критическую важность конкретной 
аминокислотной последовательности для эффективного 
связывания. Стоит отметить, что в отсутствие Aβ оба 
пептида демонстрировали схожую внутриклеточную 
локализацию, что указывает на их стабильность 
и способность к проникновению в клетку. Однако 
интенсивный и структурно организованный сигнал от 
пептида НАЕЕ-Cy5, проявляющийся в виде дискретных 
цитоплазматических скоплений, указывает на его 
способность к проникновению в клетку и взаимодействию 
с внутриклеточными структурами. При этом, согласно 
литературным данным [19], наблюдаемая колокализация 
с Aβ (рис. 4) происходит во внеклеточном пространстве, 
что и подтверждает специфичность связывания. Важно 

Рис. 3. Локализация соединений EEАН-Cy5 и НАЕЕ-Cy5 в клетках линии SH-SY5Y. Сигнал от соединений, меченных Cy5 (красный). Ядра клеток визуализированы 
с помощью DAPI (синий). Масштабный отрезок 20 мкм
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Рис. 4. Визуализация связывания НАЕЕ-Cy5 и ЕЕАН-Cy5 с агрегатами Aβ в клетках линии SH-SY5Y. Сигнал от тетрапептидов, меченных Cy5 (красный). 
Антитела на Aβ, меченные alexa 488 (зеленый). Желтый цвет на совмещенном изображении указывает на колокализацию пептидов с агрегатами Aβ. Ядра 
клеток визуализированы с помощью DAPI (синий). Масштабный отрезок 20 мкм

отметить, что наблюдаемое распределение НАЕЕ-Cy5 
качественно отличалось от диффузного сигнала свободного 
красителя Cy5-NH

2
, что исключает объяснение простым 

накоплением красителя и подчеркивает роль пептидной 
последовательности в направленном связывании.

Полученные результаты имеют важное практическое 
значение. Выявленная специфичность НАЕЕ-Cy5 к 
агрегатам Aβ позволяет рассматривать его в качестве 
перспективного лиганда для создания диагностических 
средств. В частности, его можно использовать как 
основу для разработки: МРТ-контрастных препаратов 
для прижизненной визуализации амилоидных бляшек, 
флуоресцентных зондов для интраоперационной детекции 
амилоидных отложений, тераностических платформ для 
направленной доставки лекарственных средств. В отличие 
от НАЕЕ-Cy5, пептид ЕЕАН-Cy5 демонстрирует полное
отсутствие связывающей активности, и это наглядно 
показывает, что биологическая функция определяется 
не только аминокислотным составом, но и строго 
определенным порядком аминокислот. Для дальнейшего 
развития данного направления исследований требуется: 
1) детальное изучение молекулярных взаимодействий НАЕЕ 
с Aβ-методами молекулярного докинга и спектроскопии; 

2) оценка способности НАЕЕ ингибировать агрегацию 
Aβ in vitro; 3) исследование in vivo распределения 
и биодоступности НАЕЕ на трансгенных моделях 
БА. Таким образом, результаты работы не только 
идентифицировали высокоспецифичный лиганд для Aβ, 
но и продемонстрировали, что минимальные изменения 
в структуре пептида могут кардинально влиять на его 
функциональные свойства, что имеет фундаментальное 
значение для дизайна пептидных препаратов.

ВЫВОДЫ

В ходе исследования была успешно валидирована методика 
детекции агрегатов Aβ и визуализировано специфическое 
связывание тетрапептида НАЕЕ, конъюгированного с Cy5, 
с амилоидными агрегатами на клеточной линии SH-SY5Y, 
что было количественно подтверждено высоким 
коэффициентом колокализации Мандерса (0.58 ± 0.03). 
Критическая важность аминокислотной последовательности 
для этого взаимодействия была установлена на основании того, 
что пептид ЕЕАН-Cy5 с инвертированной последовательностью 
продемонстрировал полное отсутствие связывающей 
активности. Таким образом, установлено, что именно 
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N-концевое положение гистидина является критическим для 
формирования специфических взаимодействий с агрегатами 
Aβ. Полученные результаты подтверждают перспективность 
применения НАЕЕ в качестве целевого лиганда для 
разработки диагностических и тераностических средств 

против БА, а также подчеркивают важность стереохимических 
факторов при конструировании пептидных препаратов. Для 
дальнейшего развития направления требуются исследования 
молекулярных механизмов взаимодействия и изучение in vivo 
распределения пептида.
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