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DEVELOPMENT OF THE VASCULAR CONDITION CLASSIFIER USING SUPERVISED 
MACHINE LEARNING METHODS

Quantitative processing of optoacoustic angiograms is an important task, the solution of which will potentially enable the early diagnosis of vascular diseases. 

The aim of this study is to refine and conduct biomedical validation of a software tool for the analysis of optoacoustic angiograms, focusing on the application of 

machine learning methods. The work was conducted on an open dataset containing three-dimensional optoacoustic angiograms of an experimental animal (mouse) 

in three temperature conditions: cold temperature (16 °C), room temperature (23 °C), and body temperature (30 °C), as well as a dataset with basic vascular 

features obtained by processing using Amira/Avizo (Thermo Fisher Scientific), a general-purpose software for visualization and analysis of scientific and industrial 

data. Various vascular features missing from previous work were developed and calculated, after which basic methods of unsupervised/supervised clustering and 

supervised classification were applied to determine different temperature conditions of vessel segments. Supervised classification methods demonstrated high 

overall accuracy: CatBoost — 98.9%, SGDClassifier — 95.7%, and logistic regression — 99.7%. The results are consistent with existing descriptions of vascular 

changes during temperature tests. The applied methodology is universal, meaning with minor modifications it can be adapted to patients. Therefore, the results of 

this study may potentially improve the diagnosis of vascular pathologies.
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З. В. Беседовская1,2      , А. Ю. Коробов3, Н. И. Кудряшова4

РАЗРАБОТКА КЛАССИФИКАТОРА СОСТОЯНИЙ СОСУДОВ С ИСПОЛЬЗОВАНИЕМ 
МЕТОДОВ КОНТРОЛИРУЕМОГО МАШИННОГО ОБУЧЕНИЯ

Количественная обработка оптоакустических ангиограмм — одна из важных задач, решение которой в перспективе позволит диагностировать 

сосудистые заболевания на ранних стадиях. Целью исследования было провести доработку и медико-биологическую валидацию программного 

инструмента для анализа оптоакустических ангиограмм с фокусом на применение методов машинного обучения. Работу проводили на открытом 

наборе данных, содержащем трехмерные оптоакустические ангиограммы экспериментального животного (мыши) в трех температурных состояниях: 

температура холодной воды (16 °C), комнатная температура (23 °C) и температура тела (30 °C), а также датасет с базовыми параметрами сосудов, 

полученных при обработке программным обеспечением общего назначения для визуализации и анализа научных и промышленных данных Amira/Avizo 

(Thermo Fisher Scientific). Были разработаны и посчитаны различные параметры сосудов, отсутствующие в предыдущей работе, после чего применены 

основные методы неконтролируемой/контролируемой кластеризации и контролируемой классификации для определения принадлежности сегментов 

сосудов к разным температурным состояниям. Методы контролируемой классификации показали высокую общую точность: CatBoost — 98,9%, 

SGDClassifier — 95,7%, логистическа регрессия — 99,7%. Полученные результаты согласуются с существующими описаниями изменений сосудов при 

температурных тестах. Примененная методология универсальна, а значит при небольшой модификации может быть адаптирована для пациентов. Таким 

образом, полученные результаты в перспективе позволят улучшить диагностику сосудистых патологий.

Ключевые слова: оптоакустика, кластеризация васкулярных изменений, вазодилатация, вазоконстрикция, ангиография, фотоакустика
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Optoacoustic (OA) angiography is a promising new vascular 
imaging technique applicable in scientific research and clinical 
practice. It is based on the optoacoustic effect: the acoustic 
response of materials to intermittent light [1, 2]. Thus, the 
method combines optical and acoustic approaches, and 
angiography itself is based on the optical absorption of light by 
hemoglobin [3].

One of the advantages of OA angiography is its noninvasive 
nature [1]. In diagnostics, it can complement large-vessel 
imaging techniques [4]. Compared to small-vessel imaging 
techniques (capillaroscopy, optical coherence tomography), 
OA provides greater visualization depth [5, 6] and enables 
assessment of arterioles, venules, as well as small arteries and 
veins [5].

OA is successfully used in various fields of both applied 
medicine and fundamental research. The method's successes 
can be highlighted in ophthalmology [7, 8], dermatology [9], 
cardiology [10], oncology [11], and neuroimaging [12].

Preclinical and fundamental biological research play a key 
role both in the study of basic biological processes and in the 
further development of OA imaging methodology itself [5].

Despite significant advances in the development of OA 
imaging technology, its widespread clinical implementation is 
hampered by a number of significant technological limitations. 
Limitations of the method include low imaging speed, a 
fundamental contradiction between spatial resolution and 
penetration depth, and engineering challenges in integrating 
light delivery systems and ultrasound (US) transducers [5, 6].

Artificial intelligence (AI) application is dramatically improving 
OA imaging. Neural networks such as U-Net effectively eliminate 
artifacts and improve image quality. Furthermore, AI automates 
data analysis, making diagnostics faster and more objective 
[13, 14]. Thus, the use of AI helps overcome technological 
barriers, enables wider clinical adoption of OA imaging, and 
opens new horizons for noninvasive diagnostics [5].

The goal of this work is to develop a methodology for 
analyzing various vascular features and validate it on an open 
dataset containing mouse optoacoustic 3D angiograms. The 
developed software will be suitable not only for the specific 
task described above, but also (with minor modifications) for a 
wide range of studies involving OA angiograms, including the 
diagnosis of various vascular diseases in patients.

METHODS

In this work, we used the set of features mentioned in [15] 
for calculations, as well as features calculated by Amira/Avizo 
(Thermo Fisher Scientific, USA), a general-purpose software for 
visualization and analysis of scientific data. We also developed 
new features to describe segmental spatial characteristics and 
improve the accuracy of machine learning (ML) models (Table 1).

Obtaining initial open data

One Balb/C nu/nu mouse was used for OA angiography. 
Skin vessels in the animal's left thigh were visualized in a 
chamber filled with distilled water. Three technical replicates 
were obtained (Fig. 1A) for each water temperature: body 
temperature (BT) (30 °C); room temperature (RT) (23 °C); and 
cold temperature (CT) (16 °C). Each imaging was conducted 
in 10 minutes after immersion of the mouse's thigh in water to 
stabilize the tissue and water temperatures.

An OA mesoscopy system (Institute of Applied Physics, 
Russian Academy of Sciences, Russia) based on an ONDA532 
diode laser (wavelength 532 nm) was used for imaging. 

Ultrasound signals were collected using a scanning module 
in a sealed immersion chamber filled with distilled water. The 
scanning range was 10 mm in both axes, the scanning step 
was 20 μm, the time interval was approximately 5 min, and 
the signal detection depth was up to 3 mm (Fig. 1B). The 
acquired signals were converted into 3D angiographic datasets 
using reconstruction and deconvolution algorithms. The 3D 
angiographic images were processed using the SKYQUANT 
3D tool [15].

Details of the experiment are available in a previous 
publication, which describes in detail the object, methods, and 
equipment used to acquire the images [15].

Description of the original open data

The dataset contains 16,619 vessel segments with 9 quantitative 
features for each segment (based on which 9 new features 
described in Table 1 were derived and calculated) and 
11 quantitative features for each image. The experimental 
design is described in [15] and included:

Cold temperature (16 °C): 3 images, 10,418 segments;
Room temperature (23 °C): 3 images, 4,663 segments;
Body temperature (30 °C): 3 images, 1,538 segments.
For all subsequent operations, the original dataset was 

split into training, testing, and validation sets of 60%, 25%, 
and 15%, respectively (random seed = 42). For ML-based 
clustering, the features of individual segments were retained, 
while the features of individual images were used for descriptive 
statistics and quality control described in [15].

All features were standardized by removing the mean and 
scaling to unit variance using statistics computed only on the 
training samples; the same affine transformation was applied to 
the validation/test splits to prevent information leakage.

Unsupervised clustering based on centroid and density

Before moving on to more complex clusterers, a projection map 
of multidimensional objects was obtained using the nonlinear 
dimensionality reduction method UMAP (Uniform Manifold 
Approximation and Projection) with features n_neighbors = 15 
and min_dist = 0.1.

After assessing visual separability of the data, K-means 
was applied to optimize within-cluster variance.

DBSCAN was used to capture arbitrary cluster shapes and 
clearly separate "noise" from the "core."

To reduce collinearity and noise while maintaining maximum 
variance, we applied principal component analysis (PCA) with 
five principal components extracted.

Following PCA, K-means and DBSCAN were repeated, and 
internal clustering metrics were compared. 

Supervised classification

To test the separability of the data by supervised classifiers, we 
selected three additional models covering the linear-nonlinear 
and generative-discriminative families:

1. CatBoost — gradient boosting, which sequentially builds 
decision trees to minimize the loss function and improve the 
quality of the model.

2. SGDClassifier — a stochastic gradient descent learning 
approach that supports loss functions and penalties for classification.

3. Logistic Regression Softmax — adaptation of the logistic 
regression function to multiclass data.

We used a cross-validation strategy to prepare the dataset 
with all preprocessing. The metrics used were accuracy, 
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Feature Formula Description

Segment Z
Initial feature calculated automatically 

in Amira/Avizo software Average depth of the centroid of segment 𝑠

Weighted Segment MeanRadius perSegment 
(a.u.)

The mean radius value calculated for each vessel segment, 
weighted by the segment tortuosity or segment length

Weighted Segment Volume perSegment (a.u.)
The curved length-weighted volume value calculated for each 

vessel segment

Features reflecting the pressure of surrounding tissues on the vessels

Linearity
Assesses the “threadlikeness” of a segment; values ​​close to 1 

correspond to elongated, “rod-like” structures

Planarity
Assesses the "ribboniness" (two-dimensionality of an object). 

High values ​​are typical for geometries flattened in a plane

LinearityScore

Normalized metrics are robust to the overall Tensor 
scale. In practical data, LinearityScore + PlanarityScore + 

ScatteringScore ≈ 1
PlanarityScore

ScatteringScore

VerticalityScore                                                            ∈ [0,1]
The cosine of the angle between the main axis of the segment 

and the Z axis

VerticalityAngle (rad) Angle to the Z-axis in radians

Table 1. Developed and calculated vessel features to describe the characteristics of vascular segments and their position in the image area

Mean Radius iseg image j;

Vessels segment Curved lenght

Mean Radius iseg image j;

Vessels segment Curved lenght

overall accuracy, balanced accuracy, logarithmic loss function 
Llog, Matthews correlation coefficient (MCC), Cohen's 
kappa (Cohen's κ), as well as ROC-AUC with macro- and 
micro-averaging and F1-measure with macro- and weighted 
averaging. Confusion matrices normalized by true classes are 
also presented.

RESULTS

Dimensionality reduction using the UMAP method

The UMAP method was used to visualize the multidimensional 
data structure. 

UMAP visualization demonstrated a clear division of the 
data into three clusters corresponding to the three experimental 
temperature conditions (Fig. 2). The cold temperature cluster 
(16 °C) was the most compact, indicating pronounced and 
uniform changes in vascular architecture under hypothermia. 
The room temperature cluster (23 °C) occupied an intermediate 

position between the other two groups, while the body 
temperature cluster (30 °C) demonstrated a greater dispersion 
of points, indicating variability in vascular characteristics under 
physiological conditions. 

Unsupervised clustering

To evaluate the effectiveness of unsupervised ML methods in 
the problem of separating temperature states, the DBSCAN 
and K-Means algorithms were used both with and without PCA 
data preprocessing (Table 2).

An analysis of the results showed that the use of PCA 
did not significantly improve clustering quality. The DBSCAN 
algorithm demonstrated higher accuracy (0.626) and silhouette 
coefficient (0.632) compared to K-Means, but showed low 
values ​​of the macro-averaged F1-measure (F1

macro
) (0.259), 

indicating unbalanced class recognition. K-Means, in contrast, 
provided a better balance between classes (F1

macro
 = 0.367), but 

with lower overall accuracy (0.524). The extremely low values ​​of 
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Fig. 1. A. Schematic representation of the experimental design. B. Schematic representation of the experimental setup. C. Image in the analyzed coordinate plane. 
Modified from [15]

А B C

BT — body temperature    RT — room temperature    CT — cold temperature

3 images

Detector

Blood vessels

Laser 532 nm

CT
16°С

RT
23°С

BT
30°С

Fig. 2. UMAP clustering of the original data

Body temperature Room temperature Cold temperature

the adjusted Rand index (ARI < 0.015) and normalized mutual 
information (NMI < 0.02) for both algorithms indicate a weak 
correspondence between the resulting clusters and the true 
temperature groups when using unsupervised approaches.

Despite multi-stage training, the internal clustering 
evaluation metrics demonstrated insufficient consistency and 
stability for subsequent interpretation.

Supervised Classification

Classification with the Catboost Model

To solve the problem of supervised classification of temperature 
states, gradient boosting on decision trees in the Catboost 
implementation was applied. The classification results are 
presented in Fig. 2B.

The Catboost model demonstrated exceptional performance 
in classifying temperature states in the vascular network. 
Overall accuracy was 98.9%, with a balanced accuracy of 
98.5%, indicating correct model performance even with varying 
numbers of observations in classes. The area under the ROC 
curve, exceeding 0.999 for all averaging variants, indicates 
near-perfect separability of the classes in the feature space.

The highest classification recall (recall = 0.997) was achieved 
for the cold temperature group, consistent with the results of 
the UMAP analysis, which showed the greatest compactness 
and isolation of this cluster. The body temperature group 
demonstrated the highest accuracy (precision = 0.997), but 
slightly lower recall (0.985). The lowest completeness was 
observed for the room temperature group (0.971), which may 
be associated with the transitional nature of this state between 
hypo- and normothermia.



123

ORIGINAL RESEARCH    DIAGNOSTICS

BULLETIN OF RSMU   6, 2025   VESTNIK.RSMU.PRESS   DOI: 10.24075/BRSMU.2025.060| ||

Table 2. Obtained metrics of unsupervised clustering

Metrics K-Means DBSCAN K-Means (PCA) DBSCAN (PCA)

accuracy 0.524 0.626 0.524 0.626

F1
macro

0.367 0.259 0.367 0.259

silhouette 0.326 0.632 0.333 0.628

ARI 0.014 0.005 0.014 0.004

NMI 0.017 0.002 0.017 0.001

Table 3. Metrics for assessing the quality of supervised classification models

Метрика Catboost LogisticRegression SGDClassifier

accuracy 0.989 0.997 0.957

balanced accuracy 0.985 0.998 0.951

𝐿log​
0.108 0.033 0.176

MCC 0.979 0.994 0.917

Cohen’s κ 0.979 0.994 0.915

ROC-AUC
macro

0.999 0.999 0.988

F1
macro

0.988 0.997 0.96

ROC-AUC
micro

0.999 0.999 0.994

F1
weighted

0.989 0.997 0.956

Classification by the SGDClassifier model

The SGDClassifier model demonstrated robust performance 
on the test set (Table 3): overall accuracy was 95.7%, balanced 
accuracy was 95.1%, F1

macro
 was 0.960, and F1

weighted
 

was 0.956. The goodness-of-fit coefficients were also high 
(MCC = 0.917, Cohen's κ = 0.915), indicating reliable prediction 
consistency above chance. The area under the ROC curve 
was high (macro-AUC = 0.988; micro-AUC = 0.994), but it still 
performed worse than the nonlinear gradient boosting model; 
the log loss of 0.176 indicates a more conservative probabilities 
calibration compared to the Catboost model. 

Very high recall (recall = 0.997) and very high precision 
(precision = 0.994) were shown for the body temperature 
group (F1 = 0.997), indicating clear separability of this 
condition in the space of all features. For the cold temperature 
group, the model demonstrated record sensitivity (recall = 
0.995) simultaneously with moderately reduced precision 
(precision = 0.940; F1 = 0.967). The greatest clustering 
difficulties, as in the previous case, were shown for the 
room temperature group: despite high precision (precision = 
0.988), the recall is shown below (recall = 0.857; F1 = 0.918), 
indicating frequent assignments of objects from this group 
to neighboring groups, primarily to the cold temperature 
group. This effect is typical of linear separators in the case 
of a transitional class. 

Classification by logistic regression model

The logistic regression model, like Catboost, demonstrated 
near-limit performance on the test set (Table 3). The area under 
the ROC curve is close to ideal (ROC-AUC

macro
 = 0.99983; 

ROC-AUC
micro

 = 0.99987), while the low logarithmic loss 
(𝐿

log
 = 0.033) indicates good calibration of the probabilities—

better than the other linear and boosted models.
For the body temperature group, extremely high recall 

values ​​(recall = 0.996) with very high precision (precision = 
0.998; F1 = 0.999) are shown, indicating good separability 
of this condition. For the cold temperature group, the quality 
is also close to ideal (precision = 0.999; recall = 0.997; 

F1 = 0.998), meaning that the model makes virtually no errors 
in classifying segments from images in the cold temperature 
group. The greatest decrease is observed for the room 
temperature group: precision = 0.993, recall = 0.996, F1 = 0.995.
This indicates rare false positives in favor of the room temperature 
group for boundary objects.

Assessing the significance of features for three models 
revealed two stable, highly significant classes (Fig. 3A): 
topological (tortuosity, verticality/planarity, normalized 
dispersion, and linearity) and geometric (radii, lengths, volume, 
and segment Z-coordinate). It is important to note that the 
linear models (SGDClassifier and logistic regression) base their 
decisions primarily on topological features.

The confusion matrix (Fig. 3B) allows for a detailed 
assessment of misclassification patterns for the three models.

For logistic regression, the significance of tortuosity 
(Fig. 3A) is noteworthy, with its contribution exceeding that of the 
other features by an order of magnitude. Smaller but consistent 
contributions are provided by normalized verticality, normalized 
linearity, planarity, verticality angle, normalized dispersion, 
and linearity (approximately 0.28–1.07). The scale features —
mean radii, length/tortuosity-weighted mean radii, curved 
and cord length, volume and weighted volume, and segment 
z-coordinate — are of virtually zero importance.

SGDClassifier follows the same linear weighting pattern: the 
tortuosity feature contributes the most, followed by normalized 
verticality, planarity, verticality angle, normalized scattering, and 
linearity; geometric features remain close to zero.

Unlike linear models, the Catboost model exhibits a different 
feature hierarchy: the tortuosity-weighted mean radius, volume, 
and curved length are of maximum importance. Topological 
features such as tortuosity make a minor contribution.

DISCUSSION

A standard approach for analyzing OA imaging results is the 
use of AI methods [13]. An example is the work of N. Davoudi 
et al., who used the U-Net neural network to improve the quality 
of images distorted by artifacts. The authors trained the model 
on a hybrid dataset that included simulations, phantoms, and 
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Fig. 3. Characteristics of trained ML models: Catboost, SGDClassifier, LogisticRegression. A) Feature weights for individual vessel segments. B) Error matrices for the 
three models
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cross-sectional images of mice in vivo. The trained network 
effectively removed artifacts even with a sixfold undersampling 
of the original data. Validation on an experimental setup 
confirmed that the algorithm successfully copes with the task, 
significantly improving image quality [14]. However, it is worth 
considering that the main limiting factor for the use of artificial 
intelligence methods is the amount of data being analyzed [16]. 
In our study, unlike the aforementioned studies, we were able 
to overcome the data limitation by using a hybrid approach: 
image filtering and extraction of the analyzed vascular features 
are performed using a modified SKYQUANT-3D pipeline [15], 
which does not employ machine learning methods. However, 
further analysis was performed using various machine learning 
classifiers and clusterers. The effectiveness of the SKYQUANT-
3D pipeline methodology has already been confirmed in tests 
on a vascular phantom, preclinical experiments, and clinical 
experiments [15].

The most important step in the analysis of OA angiograms 
is the selection and calculation of the analyzed vascular 
features. For example, in [17], 64 microvascular features were 
obtained, characterizing vessel blood flow, changes in their 

geometric configuration, branching, spatial localization, and 
other features [17]. The authors of the study used a random 
forest-based classifier for feature selection in order to identify 
the most significant biomarkers from the initial 64 features. 
By reducing the dataset to 32 key features, they were able 
to focus on the most informative features for differentiating 
healthy volunteers from diabetic patients, thereby confirming 
the importance of selecting significant vascular features for 
further analysis [17].

In [18], visual assessment of vascular features such 
as diameter and tortuosity was performed, which enabled 
effective discrimination between patients with post-thrombotic 
syndrome and healthy volunteers [18]. In the study [15], vessel 
radii, lengths, and tortuosity were analyzed in various variations. 
This made it possible to characterize changes in the vessels of 
an experimental animal during a temperature test, as well as 
changes in the vessels of a healthy volunteer during a positional 
test [15]. Our study uses the features from the article [15], 
supplementing them with features of branching and spatial 
localization similar to those mentioned in [17]. The unique 
features of vessel planarity, verticality, and linearity also deserve 
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special attention, indicating changes in the microcirculatory bed 
due to fluid redistribution. In this experiment, fluid redistribution 
in the body of the experimental animal was associated with 
temperature changes, but similar processes can occur in 
humans as a result of the development of vascular disease, 
such as chronic venous insufficiency [19].

The feature values ​​we obtained reflect changes in the 
vessels caused by cooling, previously shown by other authors. 
Cooling causes dilation of small peripheral vessels, leading to 
a greater volume of blood containing hemoglobin, the main 
source of contrast in optoacoustics, to pass through them 
[20–22]. This makes them "visible" to the imaging system. 
The overall increase in blood volume in the studied area is a 
direct consequence of the vasodilation process. The peripheral 
vascular network is inherently more tortuous and branched 
than the main vessels, so its visibility in the image leads to 
an increase in the mean tortuosity feature [20–22]. Thus, 
the effectiveness of the classification is explained by existing 
biological effects. It is worth noting that many of the analysis 
components are universal for both animals and humans, 
which allows the development to be implemented into clinical 
practice.

CONCLUSIONS

In this study, quantitative vascular features were calculated and 
analyzed to describe the state of the microcirculatory bed.

Various machine learning methods were compared for 
determining different temperature states in experimental 
animals. Supervised classification methods demonstrated 
the greatest effectiveness, with near-absolute accuracy. 
The Catboost and logistic regression models demonstrated 
the greatest success, accounting for the most significant 
physiological features. Further, the choice between the two 
models should be made on a case-by-case basis, depending 
on the specific feature distribution. Feature weights reflect the 
actual physiology of vascular changes.

The methodology developed in this study will potentially 
help not only effectively distinguish between experimental 
conditions but also differentiate pathological vascular changes 
from each other and from the norm in patients with various 
diseases. This will help overcome some of the limitations of 
OA angiography, enabling its wider implementation in clinical 
practice. This will enable more accurate diagnosis of vascular 
changes in the early stages of diseases.
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