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Quantitative processing of optoacoustic angiograms is an important task, the solution of which will potentially enable the early diagnosis of vascular diseases.
The aim of this study is to refine and conduct biomedical validation of a software tool for the analysis of optoacoustic angiograms, focusing on the application of
machine learning methods. The work was conducted on an open dataset containing three-dimensional optoacoustic angiograms of an experimental animal (mouse)
in three temperature conditions: cold temperature (16 °C), room temperature (23 °C), and body temperature (30 °C), as well as a dataset with basic vascular
features obtained by processing using Amira/Avizo (Thermo Fisher Scientific), a general-purpose software for visualization and analysis of scientific and industrial
data. Various vascular features missing from previous work were developed and calculated, after which basic methods of unsupervised/supervised clustering and
supervised classification were applied to determine different temperature conditions of vessel segments. Supervised classification methods demonstrated high
overall accuracy: CatBoost — 98.9%, SGDClassifier — 95.7%, and logistic regression — 99.7%. The results are consistent with existing descriptions of vascular
changes during temperature tests. The applied methodology is universal, meaning with minor modifications it can be adapted to patients. Therefore, the results of
this study may potentially improve the diagnosis of vascular pathologies.
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PASPABOTKA KJIACCU®UKATOPA COCTOSIHUI COCYAOB C UCMOJIb30OBAHUEM
METOA0B KOHTPOJIMPYEMOIO MALLIMHHOIO OBYYEHUA
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KonuyecTtBeHHas o6paboTka onToakyCTUHECKNX aHrMorpaMm — OfiHa 13 BaXkHbIX 3a[ad, peLleHne KOTOpol B NMepcneKkTnBe No3BOANT AMarHoCTMPOBaTb
cocyavcTble 3aboneBaHns Ha paHHUX cTagusax. Llenbio nccnegosaHns 610 NPOBECTV AOPaboTKy 1 MeanKo-O1MoNorMyeckyio BannaaLmio nporpamMHoro
VHCTPYMEHTA S8 aHanm3a OnToakyCTUHECKNX aHMMOrpamMM C (DOKYCOM Ha MPUMEHEHWE METOA0B MaLLMHHOMO 06y4eHns. PaboTy NpoBOAMAN Ha OTKPbLITOM
Habope fAaHHbIX, Cofep>KalleM TPEXMEPHbIE OMTOaKYCTUHECKME aHMMOrPaMMbl AKCMEPVMEHTATIBHOTO XUBOTHOMO (MbILLM) B TPEX TeMnepaTypHbIX COCTOSIHUSX:
Temnepatypa xonogHon Boabl (16 °C), komHaTHast Temnepatypa (23 °C) n Temnepatypa Tena (30 °C), a Takke pataceT ¢ 6a30BbIMU NapaMeTpamin COCyaoB,
nosy4eHHbIX NPy 06paboTKe NporpaMmHbIM obecredeHeM OBLLErO HasHaYeHVst NS BU3yann3aLmmn 1 aHanmaa HayHHbIX 1 MPOMBILLIEHHbIX AaHHbIX Amira/Avizo
(Thermo Fisher Scientific). Bbinn pagpaboTaHbl 1 NOCHMTaHbl Pa3nyHble NapaMeTpbl COCYA0B, OTCYTCTBYIOLLME B NMPeaplayLLen paboTe, Nocne Yero NpuMeHeHb!
OCHOBHbIE METOAbI HEKOHTPOIMPYEMOW/KOHTPONMPYEMOI KacTepraaLn 1 KOHTPOIMPYEMON Knaccuukaummn Ans onpeaeneHyst NpUHagnexxHoCTV CerMeHToB
COCY[I0B K pa3dHbIM TemrnepaTypHbiM COCTOSHUSM. MeToabl KOHTPONMPYEeMOl KnaccudmkaLm nokasanm BbICOKYHO 06LLyt0 TouHOCTh: CatBoost — 98,9%,
SGDClassifier — 95,7%, noructndecka perpeccust — 99,7%. Nony4eHHble pesynsTaTbl COrnacytoTcsa C CyLLECTBYIOLLMMM ONUCAHUAMM U3MEHEHWA COCYA0B Mpu
TeMnepaTypHbIx TecTax. [prMeHeHHas MeTOLoNOMVs yHUBEPCasbHa, @ 3Ha4UT Npvt HeboMbLION MoAUMYKaLWV MOXET BbITb aganTpoBaHa 415 NauvieHToB. TakviM
06pa3oMm, Nony4eHHble PesynsTaThl B MEPCNEKTUBE NO3BONSAT YyHLLMTE ANArHOCTUKY COCYANCTLIX MaTONOMUIA.
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Optoacoustic (OA) angiography is a promising new vascular
imaging technique applicable in scientific research and clinical
practice. It is based on the optoacoustic effect: the acoustic
response of materials to intermittent light [1, 2]. Thus, the
method combines optical and acoustic approaches, and
angiography itself is based on the optical absorption of light by
hemoglobin [3].

One of the advantages of OA angiography is its noninvasive
nature [1]. In diagnostics, it can complement large-vessel
imaging techniques [4]. Compared to small-vessel imaging
techniques (capillaroscopy, optical coherence tomography),
OA provides greater visualization depth [5, 6] and enables
assessment of arterioles, venules, as well as small arteries and
veins [5].

OA is successfully used in various fields of both applied
medicine and fundamental research. The method's successes
can be highlighted in ophthalmology [7, 8], dermatology [9],
cardiology [10], oncology [11], and neuroimaging [12].

Preclinical and fundamental biological research play a key
role both in the study of basic biological processes and in the
further development of OA imaging methodology itself [5].

Despite significant advances in the development of OA
imaging technology, its widespread clinical implementation is
hampered by a number of significant technological limitations.
Limitations of the method include low imaging speed, a
fundamental contradiction between spatial resolution and
penetration depth, and engineering challenges in integrating
light delivery systems and ultrasound (US) transducers [5, 6].

Artificial intelligence (Al) application is dramatically improving
OA imaging. Neural networks such as U-Net effectively eliminate
artifacts and improve image quality. Furthermore, Al automates
data analysis, making diagnostics faster and more objective
[13, 14]. Thus, the use of Al helps overcome technological
barriers, enables wider clinical adoption of OA imaging, and
opens new horizons for noninvasive diagnostics [5].

The goal of this work is to develop a methodology for
analyzing various vascular features and validate it on an open
dataset containing mouse optoacoustic 3D angiograms. The
developed software will be suitable not only for the specific
task described above, but also (with minor modifications) for a
wide range of studies involving OA angiograms, including the
diagnosis of various vascular diseases in patients.

METHODS

In this work, we used the set of features mentioned in [15]
for calculations, as well as features calculated by Amira/Avizo
(Thermo Fisher Scientific, USA), a general-purpose software for
visualization and analysis of scientific data. We also developed
new features to describe segmental spatial characteristics and
improve the accuracy of machine learning (ML) models (Table 1).

Obtaining initial open data

One Balb/C nu/nu mouse was used for OA angiography.
Skin vessels in the animal's left thigh were visualized in a
chamber filled with distilled water. Three technical replicates
were obtained (Fig. 1A) for each water temperature: body
temperature (BT) (30 °C); room temperature (RT) (23 °C); and
cold temperature (CT) (16 °C). Each imaging was conducted
in 10 minutes after immersion of the mouse's thigh in water to
stabilize the tissue and water temperatures.

An OA mesoscopy system (Institute of Applied Physics,
Russian Academy of Sciences, Russia) based on an ONDA532
diode laser (wavelength 532 nm) was used for imaging.

Ultrasound signals were collected using a scanning module
in a sealed immersion chamber filled with distilled water. The
scanning range was 10 mm in both axes, the scanning step
was 20 pym, the time interval was approximately 5 min, and
the signal detection depth was up to 3 mm (Fig. 1B). The
acquired signals were converted into 3D angiographic datasets
using reconstruction and deconvolution algorithms. The 3D
angiographic images were processed using the SKYQUANT
3D tool [15].

Details of the experiment are available in a previous
publication, which describes in detail the object, methods, and
equipment used to acquire the images [15].

Description of the original open data

The dataset contains 16,619 vessel segments with 9 quantitative
features for each segment (based on which 9 new features
described in Table 1 were derived and calculated) and
11 quantitative features for each image. The experimental
design is described in [15] and included:

Cold temperature (16 °C): 3 images, 10,418 segments;

Room temperature (23 °C): 3 images, 4,663 segments;

Body temperature (30 °C): 3 images, 1,538 segments.

For all subsequent operations, the original dataset was
split into training, testing, and validation sets of 60%, 25%,
and 15%, respectively (random seed = 42). For ML-based
clustering, the features of individual segments were retained,
while the features of individual images were used for descriptive
statistics and quality control described in [15].

All features were standardized by removing the mean and
scaling to unit variance using statistics computed only on the
training samples; the same affine transformation was applied to
the validation/test splits to prevent information leakage.

Unsupervised clustering based on centroid and density

Before moving on to more complex clusterers, a projection map
of multidimensional objects was obtained using the nonlinear
dimensionality reduction method UMAP (Uniform Manifold
Approximation and Projection) with features n_neighbors = 15
and min_dist = 0.1.

After assessing visual separability of the data, K-means
was applied to optimize within-cluster variance.

DBSCAN was used to capture arbitrary cluster shapes and
clearly separate "noise" from the "core."

To reduce collinearity and noise while maintaining maximum
variance, we applied principal component analysis (PCA) with
five principal components extracted.

Following PCA, K-means and DBSCAN were repeated, and
internal clustering metrics were compared.

Supervised classification

To test the separability of the data by supervised classifiers, we
selected three additional models covering the linear-nonlinear
and generative-discriminative families:

1. CatBoost — gradient boosting, which sequentially builds
decision trees to minimize the loss function and improve the
quality of the model.

2. SGDClassifier — a stochastic gradient descent learning
approach that supports loss functions and penatties for classification.

3. Logistic Regression Softmax — adaptation of the logistic
regression function to multiclass data.

We used a cross-validation strategy to prepare the dataset
with all preprocessing. The metrics used were accuracy,
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Table 1. Developed and calculated vessel features to describe the characteristics of vascular segments and their position in the image area

Feature Formula

Description

Segment Z

Initial feature calculated automatically
in Amira/Avizo software
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vessel segment

Features reflecting the pressure of surrounding tissues on the vessels

Assesses the “threadlikeness” of a segment; values close to 1

A=A
. . . . _ 12
Linearity Llneanty ~ max Al,a correspond to elongated, “rod-like” structures
Planarit Pl T A,—Ay Assesses the "ribboniness" (two-dimensionality of an object).
¥ anarity = maxi A High values are typical for geometries flattened in a plane
. . A A
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Normalized metrics are robust to the overall Tensor
PlanarityScore Pl . - 2'{‘12_13) scale. In practical data, LinearityScore + PlanarityScore +
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. 3A
ScatteringScore Scattering — 3
score T

VerticalityScore

Verticalitymm = |UIZ| €10,1]

The cosine of the angle between the main axis of the segment
and the Z axis

VerticalityAngle (rad)
€ [0, /2]

Verticality = arccos
Angle

Angle to the Z-axis in radians

overall accuracy, balanced accuracy, logarithmic loss function
Llog, Matthews correlation coefficient (MCC), Cohen's
kappa (Cohen's k), as well as ROC-AUC with macro- and
micro-averaging and F1-measure with macro- and weighted
averaging. Confusion matrices normalized by true classes are
also presented.

RESULTS
Dimensionality reduction using the UMAP method

The UMAP method was used to visualize the multidimensional
data structure.

UMAP visualization demonstrated a clear division of the
data into three clusters corresponding to the three experimental
temperature conditions (Fig. 2). The cold temperature cluster
(16 °C) was the most compact, indicating pronounced and
uniform changes in vascular architecture under hypothermia.
The room temperature cluster (23 °C) occupied an intermediate
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position between the other two groups, while the body
temperature cluster (30 °C) demonstrated a greater dispersion
of points, indicating variability in vascular characteristics under
physiological conditions.

Unsupervised clustering

To evaluate the effectiveness of unsupervised ML methods in
the problem of separating temperature states, the DBSCAN
and K-Means algorithms were used both with and without PCA
data preprocessing (Table 2).

An analysis of the results showed that the use of PCA
did not significantly improve clustering quality. The DBSCAN
algorithm demonstrated higher accuracy (0.626) and silhouette
coefficient (0.632) compared to K-Means, but showed low
values of the macro-averaged F1-measure (F1___ ) (0.259),
indicating unbalanced class recognition. K-Means, in contrast,
provided a better balance between classes (F1__ . =0.367), but
with lower overall accuracy (0.524). The extremely low values of
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BT — body temperature RT — room temperature CT — cold temperature

CT
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BT RT
30°C 23°C
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Detector

\
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Fig. 1. A. Schematic representation of the experimental design. B. Schematic representation of the experimental setup. C. Image in the analyzed coordinate plane.

Modified from [15]

the adjusted Rand index (ARI < 0.015) and normalized mutual
information (NMI < 0.02) for both algorithms indicate a weak
correspondence between the resulting clusters and the true
temperature groups when using unsupervised approaches.

Despite multi-stage training, the internal clustering
evaluation metrics demonstrated insufficient consistency and
stability for subsequent interpretation.

Supervised Classification

Classification with the Catboost Model

To solve the problem of supervised classification of temperature
states, gradient boosting on decision trees in the Catboost

implementation was applied. The classification results are
presented in Fig. 2B.

The Catboost model demonstrated exceptional performance
in classifying temperature states in the vascular network.
Overall accuracy was 98.9%, with a balanced accuracy of
98.5%, indicating correct model performance even with varying
numbers of observations in classes. The area under the ROC
curve, exceeding 0.999 for all averaging variants, indicates
near-perfect separability of the classes in the feature space.

The highest classification recall (recall = 0.997) was achieved
for the cold temperature group, consistent with the results of
the UMAP analysis, which showed the greatest compactness
and isolation of this cluster. The body temperature group
demonstrated the highest accuracy (precision = 0.997), but
slightly lower recall (0.985). The lowest completeness was
observed for the room temperature group (0.971), which may
be associated with the transitional nature of this state between
hypo- and normothermia.

mm Body temperature

&

.’ :
P o
oA g
g B ""‘k
£ R
)
e \0.'\ v
¥,
4" ~

Room temperature

Cold temperature

UMAP: n_neighbors=15, min_dist=0.1

Fig. 2. UMAP clustering of the original data
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Table 2. Obtained metrics of unsupervised clustering
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Metrics K-Means DBSCAN K-Means (PCA) DBSCAN (PCA)
accuracy 0.524 0.626 0.524 0.626
F1 oo 0.367 0.259 0.367 0.259
silhouette 0.326 0.632 0.333 0.628
ARI 0.014 0.005 0.014 0.004
NMI 0.017 0.002 0.017 0.001

Classification by the SGDClassifier model

The SGDClassifier model demonstrated robust performance
on the test set (Table 3): overall accuracy was 95.7%, balanced
accuracy was 95.1%, F1_ ~ was 0.960, and F1 . .
was 0.956. The goodness-of-fit coefficients were also high
(MCC =0.917, Cohen's x = 0.915), indicating reliable prediction
consistency above chance. The area under the ROC curve
was high (macro-AUC = 0.988; micro-AUC = 0.994), but it still
performed worse than the nonlinear gradient boosting model;
the log loss of 0.176 indicates a more conservative probabilities
calibration compared to the Catboost model.

Very high recall (recall = 0.997) and very high precision
(precision = 0.994) were shown for the body temperature
group (F1 = 0.997), indicating clear separability of this
condition in the space of all features. For the cold temperature
group, the model demonstrated record sensitivity (recall =
0.995) simultaneously with moderately reduced precision
(precision = 0.940; F1 = 0.967). The greatest clustering
difficulties, as in the previous case, were shown for the
room temperature group: despite high precision (precision =
0.988), the recall is shown below (recall = 0.857; F1 = 0.918),
indicating frequent assignments of objects from this group
to neighboring groups, primarily to the cold temperature
group. This effect is typical of linear separators in the case
of a transitional class.

Classification by logistic regression model

The logistic regression model, like Catboost, demonstrated
near-limit performance on the test set (Table 3). The area under
the ROC curve is close to ideal (ROC-AUC = = 0.99983;
ROC-AUC = 0.99987), while the low logarithmic loss
(L., = 0.033) indicates good calibration of the probabilities—
better than the other linear and boosted models.

For the body temperature group, extremely high recall
values (recall = 0.996) with very high precision (precision =
0.998; F1 = 0.999) are shown, indicating good separability
of this condition. For the cold temperature group, the quality
is also close to ideal (precision = 0.999; recall = 0.997;

Table 3. Metrics for assessing the quality of supervised classification models

F1 = 0.998), meaning that the model makes virtually no errors
in classifying segments from images in the cold temperature
group. The greatest decrease is observed for the room
temperature group: precision = 0.993, recall = 0.996, F1 = 0.995.
This indicates rare false positives in favor of the room temperature
group for boundary objects.

Assessing the significance of features for three models
revealed two stable, highly significant classes (Fig. 3A):
topological (tortuosity, verticality/planarity, normalized
dispersion, and linearity) and geometric (radii, lengths, volume,
and segment Z-coordinate). It is important to note that the
linear models (SGDClassifier and logistic regression) base their
decisions primarily on topological features.

The confusion matrix (Fig. 3B) allows for a detailed
assessment of misclassification patterns for the three models.

For logistic regression, the significance of tortuosity
(Fig. 3A) is noteworthy, with its contribution exceeding that of the
other features by an order of magnitude. Smaller but consistent
contributions are provided by normalized verticality, normalized
linearity, planarity, verticality angle, normalized dispersion,
and linearity (approximately 0.28-1.07). The scale features —
mean radii, length/tortuosity-weighted mean radii, curved
and cord length, volume and weighted volume, and segment
z-coordinate — are of virtually zero importance.

SGDClassifier follows the same linear weighting pattern: the
tortuosity feature contributes the most, followed by normalized
verticality, planarity, verticality angle, normalized scattering, and
linearity; geometric features remain close to zero.

Unlike linear models, the Catboost model exhibits a different
feature hierarchy: the tortuosity-weighted mean radius, volume,
and curved length are of maximum importance. Topological
features such as tortuosity make a minor contribution.

DISCUSSION

A standard approach for analyzing OA imaging results is the
use of Al methods [13]. An example is the work of N. Davoudi
et al., who used the U-Net neural network to improve the quality
of images distorted by artifacts. The authors trained the model
on a hybrid dataset that included simulations, phantoms, and

Metpuka Catboost LogisticRegression SGDClassifier

accuracy 0.989 0.997 0.957
balanced accuracy 0.985 0.998 0.951
Ly 0.108 0.033 0.176
mMCC 0.979 0.994 0.917
Cohen’s k 0.979 0.994 0.915
ROC-AUC ..., 0.999 0.999 0.988
F1 oo 0.988 0.997 0.96
ROC-AUC ., 0.999 0.999 0.994

1, eighied 0.989 0.997 0.956
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Feature importance Catboost
Weighted(on_CurvedLength)_MeanRadius_perSegment 0,0026 0,0022 cold i s o
Volume | ) 3,8e-14 3,3e-14
©
s
CurvedLength | 17 6,26-05 5,3e-05 3 body | o o065 9
]
o
Weighted(on_Tortuosity)_MeanRadius_perSegment [ 5,2 0,003 8,3e-16
room 52 2 1811
ChordLength [ 4,1 3,3e-05 2,3e-05
L L L
cold body room
MeanRadius [ 3,7 0,0023 0,0023
SGD
Segment Z 2,8 6,8e-07 3e-07
cold 4146 3 20
Tortuosity [ 343 41 38
©
8
Weighted(on_CurvedLength)_Volume_perSegment |- 0,89 1,1e-15 0,0027 % body L o 615 °
(]
o
LinearityScore | 0,81 0,072 0,98
OrientationPhi [ 0,68 0 0,00027 room S # 1299
L L s
ScatteringScore |- 0,44 2,3 0,34 cold body room
Logistic Regression
VerticalityScore | 0,41 7.6 -
cold 9 13
Linearity - 0,37 1.4 0,28
CT — cold
temperature PlanarityScore |- 0,33 3 0 %
BT — body — body 0 615 0
temperature 8
Planarity | 0,31 3,8 0,37 o
RT — room ¥
temperature
VerticalityAngle (rad) [- 0,21 31 035 room | 6 1 1858
OrientationTheta [- 0,18 0,055 0,006 . . »
i i i cold body room
A Catboost SGD LgReg B Predicted labels

Fig. 3. Characteristics of trained ML models: Catboost, SGDClassifier, LogisticRegression. A) Feature weights for individual vessel segments. B) Error matrices for the

three models

cross-sectional images of mice in vivo. The trained network
effectively removed artifacts even with a sixfold undersampling
of the original data. Validation on an experimental setup
confirmed that the algorithm successfully copes with the task,
significantly improving image quality [14]. However, it is worth
considering that the main limiting factor for the use of artificial
intelligence methods is the amount of data being analyzed [16].
In our study, unlike the aforementioned studies, we were able
to overcome the data limitation by using a hybrid approach:
image filtering and extraction of the analyzed vascular features
are performed using a modified SKYQUANT-3D pipeline [15],
which does not employ machine learning methods. However,
further analysis was performed using various machine learning
classifiers and clusterers. The effectiveness of the SKYQUANT-
3D pipeline methodology has already been confirmed in tests
on a vascular phantom, preclinical experiments, and clinical
experiments [15].

The most important step in the analysis of OA angiograms
is the selection and calculation of the analyzed vascular
features. For example, in [17], 64 microvascular features were
obtained, characterizing vessel blood flow, changes in their

geometric configuration, branching, spatial localization, and
other features [17]. The authors of the study used a random
forest-based classifier for feature selection in order to identify
the most significant biomarkers from the initial 64 features.
By reducing the dataset to 32 key features, they were able
to focus on the most informative features for differentiating
healthy volunteers from diabetic patients, thereby confirming
the importance of selecting significant vascular features for
further analysis [17].

In [18], visual assessment of vascular features such
as diameter and tortuosity was performed, which enabled
effective discrimination between patients with post-thrombotic
syndrome and healthy volunteers [18]. In the study [15], vessel
radii, lengths, and tortuosity were analyzed in various variations.
This made it possible to characterize changes in the vessels of
an experimental animal during a temperature test, as well as
changes in the vessels of a healthy volunteer during a positional
test [15]. Our study uses the features from the article [15],
supplementing them with features of branching and spatial
localization similar to those mentioned in [17]. The unique
features of vessel planarity, verticality, and linearity also deserve
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special attention, indicating changes in the microcirculatory bed
due to fluid redistribution. In this experiment, fluid redistribution
in the body of the experimental animal was associated with
temperature changes, but similar processes can occur in
humans as a result of the development of vascular disease,
such as chronic venous insufficiency [19].

The feature values we obtained reflect changes in the
vessels caused by cooling, previously shown by other authors.
Cooling causes dilation of small peripheral vessels, leading to
a greater volume of blood containing hemoglobin, the main
source of contrast in optoacoustics, to pass through them
[20-22]. This makes them "visible" to the imaging system.
The overall increase in blood volume in the studied area is a
direct consequence of the vasodilation process. The peripheral
vascular network is inherently more tortuous and branched
than the main vessels, so its visibility in the image leads to
an increase in the mean tortuosity feature [20-22]. Thus,
the effectiveness of the classification is explained by existing
biological effects. It is worth noting that many of the analysis
components are universal for both animals and humans,
which allows the development to be implemented into clinical
practice.
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