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ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ    ДИАГНОСТИКА

З. В. Беседовская1,2      , А. Ю. Коробов3, Н. И. Кудряшова4

РАЗРАБОТКА КЛАССИФИКАТОРА СОСТОЯНИЙ СОСУДОВ С ИСПОЛЬЗОВАНИЕМ 
МЕТОДОВ КОНТРОЛИРУЕМОГО МАШИННОГО ОБУЧЕНИЯ

Количественная обработка оптоакустических ангиограмм — одна из важных задач, решение которой в перспективе позволит диагностировать 

сосудистые заболевания на ранних стадиях. Целью исследования было провести доработку и медико-биологическую валидацию программного 

инструмента для анализа оптоакустических ангиограмм с фокусом на применение методов машинного обучения. Работу проводили на открытом 

наборе данных, содержащем трехмерные оптоакустические ангиограммы экспериментального животного (мыши) в трех температурных состояниях: 

температура холодной воды (16 °C), комнатная температура (23 °C) и температура тела (30 °C), а также датасет с базовыми параметрами сосудов, 

полученных при обработке программным обеспечением общего назначения для визуализации и анализа научных и промышленных данных Amira/Avizo 

(Thermo Fisher Scientific). Были разработаны и посчитаны различные параметры сосудов, отсутствующие в предыдущей работе, после чего применены 

основные методы неконтролируемой/контролируемой кластеризации и контролируемой классификации для определения принадлежности сегментов 

сосудов к разным температурным состояниям. Методы контролируемой классификации показали высокую общую точность: CatBoost — 98,9%, 

SGDClassifier — 95,7%, логистическа регрессия — 99,7%. Полученные результаты согласуются с существующими описаниями изменений сосудов при 

температурных тестах. Примененная методология универсальна, а значит при небольшой модификации может быть адаптирована для пациентов. Таким 

образом, полученные результаты в перспективе позволят улучшить диагностику сосудистых патологий.
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DEVELOPMENT OF THE VASCULAR CONDITION CLASSIFIER USING SUPERVISED 
MACHINE LEARNING METHODS

Quantitative processing of optoacoustic angiograms is an important task, the solution of which will potentially enable the early diagnosis of vascular diseases. 

The aim of this study is to refine and conduct biomedical validation of a software tool for the analysis of optoacoustic angiograms, focusing on the application of 

machine learning methods. The work was conducted on an open dataset containing three-dimensional optoacoustic angiograms of an experimental animal (mouse) 

in three temperature conditions: cold temperature (16 °C), room temperature (23 °C), and body temperature (30 °C), as well as a dataset with basic vascular 

features obtained by processing using Amira/Avizo (Thermo Fisher Scientific), a general-purpose software for visualization and analysis of scientific and industrial 

data. Various vascular features missing from previous work were developed and calculated, after which basic methods of unsupervised/supervised clustering and 

supervised classification were applied to determine different temperature conditions of vessel segments. Supervised classification methods demonstrated high 

overall accuracy: CatBoost — 98.9%, SGDClassifier — 95.7%, and logistic regression — 99.7%. The results are consistent with existing descriptions of vascular 

changes during temperature tests. The applied methodology is universal, meaning with minor modifications it can be adapted to patients. Therefore, the results of 

this study may potentially improve the diagnosis of vascular pathologies.
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Оптоакустическая (ОА) ангиография — это новый 
многообещающий метод визуализации сосудов, 
применяемый в научных исследованиях и клинической 
практике. В его основе лежит оптоакустический эффект: 
акустический отклик материалов на прерывистый свет 
[1, 2]. Таким образом, метод совмещает оптические и 
акустические подходы, а сама ангиография основана на 
оптическом поглощении света гемоглобином [3].

Одно из преимуществ ОА-ангиографии — ее 
неинвазивность [1]. В диагностике она может дополнять 
методы визуализации крупных сосудов [4]. По сравнению с 
методами визуализации мелких сосудов (капилляроскопия, 
оптическая когерентная томография), ОА обеспечивает 
большую глубину визуализации [5, 6] и позволяет оценивать 
состояние артериол, венул, а также мелких артерий и 
вен [5].

Метод ОА успешно применяют в различных областях 
как прикладной медицины, так и фундаментальных 
исследований. Можно выделить успехи метода в 
офтальмологии [7, 8], дерматологии [9], кардиологии [10], 
онкологии [11], а также нейровизуализации [12]. 

Доклинические и фундаментальные биологические 
исследования играют ключевую роль как в изучении 
базовых биологических процессов, так и в дальнейшем 
развитии самой методологии ОА-визуализации [5].

Несмотря на значительные успехи в развитии технологии 
ОА-визуализации, ее широкому клиническому внедрению 
препятствует ряд существенных технологических 
ограничений. К ограничениям метода относятся: низкая 
скорость визуализации, фундаментальное противоречие 
между пространственным разрешением и глубиной 
проникновения, а также инженерные сложности по 
интеграции систем доставки света и ультразвуковых (УЗ) 
преобразователей [5, 6].

Применение методов искусственного интеллекта (ИИ) 
кардинально улучшает ОА-визуализацию. Нейросети, такие 
как U-Net, эффективно устраняют артефакты и повышают 
качество изображений. Кроме того, ИИ автоматизирует 
анализ данных, делая диагностику быстрее и объективнее 
[13, 14].

Таким образом, использование ИИ способствует 
преодолению технологических барьеров, обеспечивает 
более широкое клиническое внедрение ОА-визуализации 
и открывает новые горизонты для неинвазивной 
диагностики [5].

Цель данной работы — разработать методологию, 
позволяющую анализировать различные параметры 
сосудов, и провалидировать ее на открытом 
наборе данных, содержащем оптоакустические 
3D-ангиограммы мыши. Разработанное программное 
обеспечение (ПО) будет предназначено не только 
для вышеописанной узкой задачи, но и (после 
незначительных модификаций), для широкого спектра 
исследований с ОА-ангиограммами, в том числе 
диагностики различных сосудистых заболеваний у 
пациентов.

МАТЕРИАЛЫ И МЕТОДЫ

В данной работе для вычислений мы использовали набор 
параметров, упомянутых ранее в статье [15], а также 
параметры, рассчитанные ПО общего назначения для 
визуализации и анализа научных данных Amira/Avizo 
(Thermo Fisher Scientific, США). Также были разработаны 
новые параметры для описания сегментарных 

пространственных характеристик и повышения точности 
моделей машинного обучения (МО) (табл. 1).

Получение исходных открытых данных

Для ОА ангиографии использовали одну мышь Balb/C nu/nu. 
Визуализацию сосудов кожи левого бедра животного 
проводили в камере, заполненной дистиллированной 
водой. Были получены три технические повторности (рис. 1A) 
для каждой температуры воды: температура тела (ТТ) 
(30 °C); комнатная температура (КТ) (23 °C) и температура 
холодной воды (ХТ) (16 °C). Каждую съемку проводили 
через 10 мин после погружения бедра мыши в воду для 
стабилизации температуры ткани и воды.

Для съемки использовали систему ОА мезоскопии 
(ИПФ РАН, Россия), основанную на диодном лазере 
ONDA532 (длина волны — 532 нм). УЗ-сигналы собирались 
с помощью сканирующего модуля, размещенного в 
герметичной иммерсионной камере с дистиллированной 
водой. При сканировании диапазон составлял 10 мм 
по обеим осям, шаг — 20 мкм, временной интервал —
около 5 мин, глубина детекции сигнала — до 3 мм 
(рис. 1Б). Полученные сигналы были преобразованы в 
ангиографические трехмерные наборы данных с помощью 
алгоритмов реконструкции и деконволюции. Трехмерные 
ангиографические изображения обрабатывали с помощью 
инструмента SKYQUANT 3D [15].

Детальная информация о проведенном эксперименте 
доступна в предыдущей публикации, где подробно 
описаны объект, методы и оборудование для получения 
изображений [15].

Описание исходных открытых данных

Полученный набор данных содержит 16 619 сегментов 
сосудов с девятью количественными параметрами для 
каждого сегмента (на базе которых были выведены и 
рассчитаны девять новых дескрипторов (табл. 1) и 11 
количественными параметрами для каждого изображения. 
Экспериментальный дизайн [15] включал:

ХТ (16 °C): три изображения, 10 418 сегментов;
КТ (23 °C): три изображения, 4663 сегмента;
ТТ (30 °C): три изображения, 1538 сегментов. 
Для всех последующих операций исходный датасет 

разделен на тренировочный, тестовый и валидационный 
соответственно 60%, 25% и 15% (random seed = 42). Для 
кластеризации на основе МО были сохранены параметры 
индивидуальных сегментов, в то время как параметры 
индивидуальных изображений были использованы для 
описательной статистики и контроля качества, описанных 
ранее [15]. 

Все параметры были стандартизированы путем 
удаления среднего значения и масштабирования до 
единичной дисперсии с использованием статистики, 
вычисленной только на обучающих выборках; то же 
аффинное преобразование применяли к проверочным/
тестовым разбиениям для предотвращения утечки 
информации.

Неконтролируемая кластеризация на основе 
центроида и плотности

До перехода к более сложным кластеризаторам была 
получена карта проекций многомерных объектов с помощью 
нелинейного метода снижения размерности UMAP (Uniform 
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Параметр Расчетная формула Описание

Segment Z
Исходный параметр, рассчитанный 

автоматически в ПО Amira/Avizo
Средняя глубина залегания центроида сегмента s

Weighted Segment MeanRadius perSegment 
(a.u.)

Взвешенное на извитую длину сегмента или извитость 
сегмента значение среднего радиуса, рассчитанное для 

каждого сегмента сосуда

Weighted Segment Volume perSegment (a.u.)
Взвешенное на извитую длину сегмента значение объема, 

рассчитанное для каждого сегмента сосуда

Параметры, отражающие давление окружающих тканей на сосуды

Linearity
Оценивает «нитевидность» сегмента, значения, близкие к 1, 

соответствуют вытянутым, «стержневым» структурам

Planarity
Оценивает «ленточность» (двумерность объекта). Высокие 

значения характерны для геометрий, распластанных в 
плоскости

LinearityScore

Нормированные метрики устойчивые к общему 
масштабу Tensor. В практических данных LinearityScore + 

PlanarityScore + ScatteringScore ≈ 1
PlanarityScore

ScatteringScore

VerticalityScore                                                            ∈ [0,1] Косинус угла между главной осью сегмента и осью Z

VerticalityAngle (rad) Угол к оси Z в радианах

Manifold Approximation and Projection) с параметрами 
n_neighbors = 15 и min_dist = 0,1. 

После оценки визуальной разделимости данных был 
применен метод K-means для оптимизации дисперсии 
внутри кластера.

Для фиксации кластеров произвольной формы и явного 
отделения «шума» от «ядра» применялся метод DBSCAN. 

Чтобы уменьшить коллинеарность и шум, сохранив 
при этом максимальную дисперсию, мы применили метод 
главных компонент (PCA) с выделением пяти главных 
компонент.

После PCA были повторно проведены K-means и 
DBSCAN, а также проведено сравнение внутренних метрик 
оценки кластеризации. 

Контролируемая классификация

Для проверки разделяемости данных контролируемыми 
классификаторами мы выбрали три дополнительных 

модели, охватывающих линейно-нелинейные и генеративно-
дискриминационные семейства.

1. CatBoost — градиентный бустинг, который 
последовательно строит деревья решений, чтобы 
минимизировать функцию потерь и улучшить качество 
модели.

2. SGDClassifier — стохастический подход обучения 
методом градиентного спуска, который поддерживает 
функции потерь и штрафы для классификации.

3. Logistic Regression Softmax — адаптация функции 
логистической регрессии под многоклассовые даные.

Мы использовали стратегию кросс-валидации при 
подготовке набора данных со всей предварительной 
обработкой. В качестве метрик были использованы 
точность, общая точность, сбалансированная точность, 
логарифмическая функция потерь Llog​, коэффициент 
корреляции Мэттьюза (MCC), каппа Коэна (Cohen’s κ), 
а также по ROC–AUC с макро- и микроусреднением и 
F1-мере с макро- и взвешенным усреднением; дополнительно 

Таблица 1. Параметры сосудов, разработанные нами и рассчитанные в данной работе для описания характеристик сосудистых сегментов и их положения 
в области изображения

ср. радиус iseg изображения j;

извитая длина сегмента

ср. радиус iseg изображения j;

извитая длина сегмента
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представлены матрицы ошибок, нормализованные по 
истинным классам.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Снижение размерности методом UMAP

Для визуализации многомерной структуры данных был 
применен метод UMAP.

UMAP-визуализация продемонстрировала четкое 
разделение данных на три кластера, соответствующих 
трем температурным условиям эксперимента (рис. 2). 
Наиболее компактным оказался кластер ХТ (16 °C), что 
указывает на выраженные и однородные изменения 
архитектуры сосудистого русла в условиях гипотермии. 
Кластер КТ (23 °C) занял промежуточное положение 
между двумя другими группами, в то время как кластер 
ТТ (30 °C) продемонстрировал большую дисперсию 
точек, свидетельствующую о вариабельности сосудистых 
характеристик в физиологических условиях. 

Неконтролируемая кластеризация

Для оценки эффективности неконтролируемых методов 
МО в задаче разделения температурных состояний 
были применены алгоритмы DBSCAN и K-Means как с 
предварительной обработкой данных PCA, так и без нее 
(табл. 2).

Анализ результатов показал, что применение PCA 
не привело к существенному улучшению качества 
кластеризации. Алгоритм DBSCAN продемонстрировал более 
высокую точность (0,626) и коэффициент силуэта (0,632) 
по сравнению с K-Means, однако показал низкие значения 
макро-усредненной F1-меры (F1macro) (0,259), что указывает 
на несбалансированное распознавание классов. K-Means, 
напротив, обеспечил лучший баланс между классами 
(F1macro = 0,367), но с меньшей общей точностью (0,524). 
Крайне низкие значения скорректированного индекса Ранда 
(ARI < 0,015) и нормализованной взаимной информации 
(NMI < 0,02) для обоих алгоритмов свидетельствуют о слабом 
соответствии полученных кластеров истинным температурным 
группам при использовании неконтролируемых подходов.

Несмотря на многоэтапную подготовку, внутренние 
метрики оценки кластеризации продемонстрировали 
недостаточную согласованность и стабильность для 
последующей интерпретации.

Контролируемая классификация

Классификация моделью Catboost

Для решения задачи контролируемой классификации 
температурных состояний был применен градиентный 
бустинг на решающих деревьях в реализации Catboost. 
Результаты классификации представлены на рис. 3Б.

Модель Catboost продемонстрировала исключительно 
высокую эффективность в задаче классификации 
температурных состояний сосудистой сети. Общая 
точность составила 98,9%, сбалансированная точность — 
98,5%, что указывает на корректную работу модели даже 
с учетом различного количества наблюдений в классах. 
Площадь под ROC-кривой, превышающая 0,999 для всех 
вариантов усреднения, свидетельствует о практически 
идеальной разделимости классов в пространстве 
параметров.

Наилучшая полнота классификации (recall = 0,997) была 
достигнута для группы ХТ, что согласуется с результатами 
UMAP-анализа, показавшими наибольшую компактность 
и обособленность данного кластера. Группа ТТ показала 
максимальную точность (precision = 0,997), однако 
несколько меньшую полноту (0,985). Наименьшая полнота 
наблюдалась для группы КТ (0,971), что может быть 
связано с переходным характером данного состояния 
между гипо- и нормотермией.

Классификация моделью SGDClassifier  

Модель SGDClassifier показала устойчивую работу на 
тестовой выборке (табл. 3): общая точность составила 
95,7%, а сбалансированная — 95,1%, F1

macro
 — 0,960, 

F1
weighted

 — 0,956. Коэффициенты согласия также 
высокие (MCC = 0,917; Cohen’s κ = 0,915), что позволяет 
судить о надежной согласованности предсказаний выше 
случайного уровня. Площадь под ROC-кривой высокая 
(macro-AUC = 0,988; micro-AUC = 0,994), однако она все 
же уступает нелинейной модели градиентного бустинга; 
логарифмические потери равные 0,176 указывают на более 
консервативную калибровку вероятностей в сравнении с 
моделью Catboost.

Очень высокая полнота (recall = 0,997) и очень высокая 
точность (precision = 0,994) была показана для группы ТТ 
(F1 = 0,997), что говорит о четкой отделимости этого 
состояния в пространстве всех параметров. Для группы ХТ 

Рис. 1. A. Схематичное представление экспериментального дизайна. Б. Схематичное изображение экспериментальной установки. В. Изображение в 
анализируемой координатной системе. Модифицировано из [15]

А Б В

ТТ — температура тела КТ — комнатная температура ХТ — холодная температура

3 изображения

Детектор

Сосуды

Лазер 532 нм

ХТ
16°С

КТ
23°С

ТТ
30°С
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модель продемонстрировала рекордную чувствительность 
(recall = 0,995) одновременно с умеренно сниженной 
точностью (precision = 0,940; F1 = 0,967). Наибольшие 
сложности кластеризации, как и в предыдущем случае, 
показаны для группы КТ: несмотря на высокую точность 
(precision = 0,988) полнота показана ниже (recall = 0,857; 
F1 = 0,918), что указывает на более частые ошибки 
классификации объектов этой группы и переносу в 
соседние группы, преимущественно в группу ХТ. Такой 
эффект типичен для линейных разделителей в случае 
переходного характера класса. 

Классификация моделью логистической регрессии

Модель логистической регрессии, как и Catboost 
продемонстрировала качество, близкое к предельному 
на тестовой выборке (табл. 3). Площадь под ROC-
кривой близка к идеальной (ROC-AUC

macro
 = 0,99983; 

ROC-AUC
micro

 = 0,99987), в то время как низкие 
логарифмические потери (𝐿

log
​ = 0,033) указывают на 

хорошую калибровку вероятностей — успешнее по 
сравнению с остальными линейными и бустинговыми 
моделями.

Для группы ТТ показаны крайне высокие значения 
полноты (recall = 0,996) при очень высокой точности 
(precision = 0,998; F1 = 0,999), что свидетельствует о 
хорошей отделимости этого состояния. Для группы 
ХТ качество также близится к идеальному (precision = 
0,999; recall = 0,997; F1 = 0,998); это означает, что модель 
практически не допускает ошибок в классификации 
сегментов из изображений группы ХТ. Наибольшее 
снижение наблюдается у группы КТ: precision = 0,993, 
recall = 0,996, F1 = 0,995. Это говорит о редких 
ложноположительных предсказаний в пользу группы КТ 
для пограничных объектов.

Оценивания значимость параметров для трех 
моделей, удалось выявить два стабильных высоко 
значимых класса (рис. 3А): топологические (извистость, 
вертикальность/планарность, нормализованная рассеянность, 
линейность) и геометрические (радиусы, длины, объем, 
координата сегмента по оси Z). Важно отметить, 
что линейные модели (SGDClassifier и логистическая 
регрессия) строят решения в основном на основании 
топологических параметров. 

Матрица ошибок (рис. 3Б) позволяет детально оценить 
паттерны неправильных классификаций для трех моделей.

Таблица 2. Полученные метрики неконтролируемой кластеризации

Метрика K-Means DBSCAN K-Means (PCA) DBSCAN (PCA)

accuracy 0,524 0,626 0,524 0,626

F1
macro

0,367 0,259 0,367 0,259

silhouette 0,326 0,632 0,333 0,628

ARI 0,014 0,005 0,014 0,004

NMI 0,017 0,002 0,017 0,001

Рис. 2. UMAP-кластеризация исходных данных

Температура тела Холодная температура Комнатная температура
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Для логистической регрессии можно отметить 
значимость извитости (рис. 3A), вклад которой на порядок 
превосходит вклад остальных параметров. Меньшие, но 
стабильные вклады дают нормализованная вертикальность, 
нормализованная линейность, планарность, угол 
вертикальности, нормализованная рассеянность и 
линейность (порядка 0,28–1,07). Масштабные параметры — 
средние радиусы, взвешенные по длине/извитости средние 
радиусы, извитая и прямая длина, объем и взвешенный 
объем, а также координата сегмента по оси Z — имеют 
практически нулевую важность. 

SGDClassifier повторяет такой же линейный паттерн 
весов: максимальный вклад вносится параметром 
извитости, далее следуют нормализованная вертикальность, 
планарность, угол вертикальности, нормализованная 
рассеянность и линейность; геометрические параметры 
остаются близкими к нулю. 

В отличие от линейных моделей, модель Catboost 
показывает другую иерархию параметров: максимальную 
значимость имеют взвешенный на извитую длину 
средний радиус, объем и извитая длина. Топологические 
параметры, такие как извитость, вносят второстепенный 
вклад.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Стандартным подходом для анализа результатов ОА-
визуализации является применение методов ИИ [13]. В 
качестве примера можно привести работу, авторы которой 
для повышения качества изображений, искаженных 
артефактами, использовали нейронную сеть U-Net. Они 
обучили модель на гибридном наборе данных, включавшем 
симуляции, фантомы и изображения поперечного сечения 
мышей in vivo. Обученная сеть эффективно удаляла 
артефакты даже при шестикратной недостаточной 
дискретизации исходных данных. Валидация на 
экспериментальной установке подтвердила, что алгоритм 
успешно справляется с задачей, значительно повышая 
качество изображений [14]. Но при этом стоит учесть, что 
основным ограничивающим фактором для использования 
методов искусственного интеллекта является количество 
анализируемых данных [16]. В нашей работе, в отличие 
от вышеупомянутых, удалось обойти ограничение по 
количеству данных за счет применения гибридного подхода: 
фильтрация изображений и извлечение анализируемых 
параметров сосудов производится модифицированным 
пайплайном SKYQUANT-3D [15], не использующим методы 
МО, но дальнейший анализ проведен с использованием 
различных МО-классификаторов и кластеризаторов. 

Эффективность методологии пайплайна SKYQUANT -3D 
уже была подтверждена в тестах на сосудистом фантоме, 
преклиническом и клиническом экспериментах [15].

Наиболее важным этапом в анализе ОА-ангиограмм 
является выбор и подсчет анализируемых параметров 
сосудов. Так, было получено 64 параметра микрососудистого 
русла, характеризующих кровенаполение сосудов, 
изменение их геометрической конфигурации, ветвление, 
пространственную локализацию и другое [17]. Авторы 
исследования использовали классификатор на основе 
случайного леса для отбора параметров, чтобы выделить 
наиболее значимые биомаркеры из первоначальных 
64 параметров. Сократив набор данных до 32 ключевых 
показателей, они смогли сосредоточиться на самых 
информативных параметрах для дифференциации 
здоровых добровольцев от пациентов с диабетом, 
подтверждая тем самым важность отбора значимых 
параметров сосудов для дальнейшего анализа [17]. 

Проведена визуальная оценка таких параметров сосудов 
как диаметр и извитость, что позволило эффективно 
различать пациентов с посттромботическим синдромом и 
здоровых добровольцев [18]. Проанализированы радиусы 
сосудов, длины и извитость в различных вариациях [15]. 
Это дало возможность охарактеризовать изменения в 
сосудах экспериментального животного в температурном 
тесте, а также изменения в сосудах здорового добровольца 
в процессе позиционного теста [15]. В нашей работе 
использованы параметры из статьи [15], и дополнены 
схожими с упомянутыми в работе [17] параметрами 
ветвистости и пространственной локализации. Также 
отдельного внимания заслуживают уникальные параметры 
планарность, вертикальность и линейность сосудов, 
указывающие на изменения микроциркуляторного русла 
вследствие перераспределения жидкости. В данном 
эксперименте перераспределение жидкости в теле 
экспериментального животного связано с температурными 
изменениями, однако схожие процессы могут происходить у 
человека как результат развития сосудистого заболевания, 
например хронической венозной недостаточности [19]. 

Полученные нами значимости параметров отражают 
изменения в сосудах, вызванные охлаждением, ранее 
показанные другими авторами. Охлаждение вызывает 
расширение мелких периферических сосудов, приводя 
к тому, что через них проходит больший объем крови, 
содержащей гемоглобин — основной источник контраста 
в оптоакустике [20–22]. Это делает их «видимыми» для 
системы визуализации. Общее увеличение объема крови 
в исследуемой области является прямым следствием 
процесса вазодилатации. Периферическая сосудистая 

Таблица 3. Метрики оценки качества моделей контролируемой классификации

Метрика Catboost LogisticRegression SGDClassifier

accuracy 0,989 0,997 0,957

balanced accuracy 0,985 0,998 0,951

𝐿log​
0,108 0,033 0,176

MCC 0,979 0,994 0,917

Cohen’s κ 0,979 0,994 0,915

ROC-AUC
macro

0,999 0,999 0,988

F1
macro

0,988 0,997 0,96

ROC-AUC
micro

0,999 0,999 0,994

F1
weighted

0,989 0,997 0,956
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сеть по своей природе является более извилистой и 
разветвленной, чем магистральные сосуды, поэтому 
ее проявление на изображении ведет к увеличению 
среднего показателя извилистости [20–22]. Таким 
образом, эффективность классификации объясняется 
существующими биологическими эффектами. Стоит 
отметить, что многие компоненты анализа универсальны 
для животного и человека, что позволяет внедрить 
разработку в клиническую практику.

ВЫВОДЫ

В данной работе рассчитаны и проанализированы 
количественные параметры сосудов, позволяющие 
описывать состояние микроциркуляторного русла. 
Были сравнены различные методы МО для определения 
разных температурных состояний экспериментального 
животного. Наибольшую эффективность показали методы 

контролируемой классификации, их точность близка к 
абсолютной. Наибольшую успешность показали модели 
Catboost и логистическая регрессия как учитывающие 
наиболее значимые физиологические параметры. 
Далее выбор между моделями должен осуществляться 
в каждом конкретном случае в зависимости от 
специфики распределения параметров. Вес параметров 
отражает реальную физиологию изменений сосудов. 
Разрабатываемая в ходе данного исследования методология 
в перспективе поможет не только эффективно различать 
экспериментальные состояния, но и дифференцировать 
между собой и от нормы патологические изменения 
сосудов на пациентах с различными заболеваниями. 
Это даст возможность преодолеть часть ограничений 
ОА-ангиографии, что позволит более широко внедрить 
данный метод в клиническую практику и более точно 
диагностировать изменения сосудов на ранних стадиях 
заболеваний.

Рис. 3. Характеристики обученных МО моделей: Catboost, SGDClassifier, LogisticRegression. А. Вес параметров для индивидуальных сегментов сосудов. 
Б. Матрицы ошибок для трех моделей
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