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TRANSCRIPTIONAL KINASE CDK8, BUT NOT CDK19, PROMOTES THE DEVELOPMENT
OF ATHEROSCLEROTIC LESIONS IN MICE
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Atherosclerosis, being the main cause of myocardial infarction and stroke, remains a global medical and social problem. Despite the fact that it is recognized as
a chronic inflammatory disorder, the intracellular molecular mechanisms that drive the disease progression are poorly understood. The CDK8 and CDK19 cyclin-
dependent kinases being the key regulators of transcription and inflammation can potentially play an important role in the atherosclerosis pathogenesis. The study
aimed to assess the impact of the Cak8 and Cdk19 gene knockout on the development of atherosclerotic lesions in apolipoprotein E-deficient mice (ApoE™/"). It has
been shown that both endothelium-specific and systemic Cdk8 knockout significantly reduce the area of atherosclerotic aortic lesions, and the total knockout has a
more prominent anti-atherogenic effect. This suggests a pleiotropic role of CDK8 in the atherosclerosis pathogenesis mediated by its function not only in endothelial
cells, but probably also in macrophages. In contrast to Cdk8, the systemic Cdk19 knockout had no significant effect on the development of atherosclerosis. Thus,
CDKS8, but not CDK19, has been identified as a pro-atherogenic regulator, which makes it a promising target for the development of novel therapeutic strategies.
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TPAHCKPUMUMNOHHAA KMHA3A CDK8, HO HE CDK19 CINMOCOBCTBYET PA3BUTUIO
ATEPOCKJTIEPOTUYECKNX MOPAXKEHWI Y MbILLEN

A. H. HesHamos'?, tO. 1. Baikosa', E. H. KopwyHos', E. M. Vicaesa', A. B. BpyTep', M. B. Ky6eknHa'>?

" ViHcTuTyT Bronorum reHa Poccuiickon akanemn Hayk, Mocksa, Poccust
2 POCCUNCKIIA HAUMOHABHBIA MCCNenoBaTenbCKuin MeAMLIMHCKIMIA yHMBepcUTeT nmenn H. W. TMinporoea, Mocksa, Poccus

ATEpoCKNepo3, ABASIOLLMIACS OCHOBHOW MPUHMHOM MH(apKTa MOKapaa v MHCYNbTa, OCTaeTCs rnobansHoN MeMKo-coumansHo Npobnemon. HecMoTps Ha
€ro NpusHaH1e B ka4ecTBe XPOHNHECKOrO BOCMAIMTENBHOMO 3a001eBaHNS, BHYTPVKIETOHHbIE MOSIEKYNSPHbIE MEXaHW3MbI, YNIPaBNstoLLMe NPorpeccnpoBaHem
60nesHn, n3ydeHol HeAOCTaTOYHO. LinknuH-3aBrcrmble knHassl CDK8 n CDK19, asnstowmecs KntoHeBbIMU Perynstopamy ToaHCKPUMNLUMU 1 BOCManeHns,
MOTeHUMANbHO MOTYT UrpaTb 3HAYMTENBHYIO POSb B MaTOreHe3e atepockieposa. Lienbto nccnenoBaHust 610 U3y4nTb BAMsiHUE HokayTa reHoB Cak8 n Cdk19
Ha pasBUTIE aTEPOCKIEPOTUHECKNX MOPaXKEHNI Y MbllLEN ¢ aedunumTom anonmnonpoTtenHa E (ApoE™/7). MokasaHo, YTo Kak 3HAoTeNMocneumdnyHbIi, Tak 1
CUCTEMHBIN HoKayT Cdk8 [OCTOBEPHO CHIKAET MoLLaab aTepOCKIEPOTUHECKNX MOPavKEHWIA a0PTbI, MPUYEM TOTasIbHbI HOKAYT OKa3bIBaeT 60see BblpaXKeHHbIN
aHTMaTePOreHHbIN aPeKT. DTO CBUAETENBCTBYET O MnenoTponHoi ponv CDK8 B natoreHese atepockneposa, OnoCcpefnoBaHHom ero (yHKLME He TONbKO
B 9HOOTENMaNbHbIX KeTkax, HO 1, BEPOATHO, B Makpodarax. B otnmune ot Cdk8, cuctemHblin HokayT Cdk19 He okasan 3Ha4MMOro BAUSIHUS Ha pasBuTve
aTtepockneposa. Takum obpadom, CDK8, Ho He CDK19, naeHtndurumpoBaH B ka4eCTBE NPOaTepOreHHOro PeryisTopa, YTo AenaeT ero nepcnekTMBHON MULLEHBIO
[ONs pa3pabOoTKN HOBbIX TEPANeBTUHECKUX CTPaTEriA.

KntoueBble crnoBa: atepocK/Iep03, reHETUHECKM MOANMDULIMPOBaHHbIE XXNBOTHbIE, TRAHCKPUNLMOHHbIE KiHa3bl CDK8 1 CDK19, atepocknepoTn4eckmie NopakeHns,
anonmnonpoTenH E
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According to the World Health Organization, myocardial infarction
and stroke, being the main complications of atherosclerosis,
remain the leading causes of death worldwide. In 2019 in Russia,
circulatory system diseases accounted for 46.8% of all fatal cases.
The high mortality rate results largely from the long asymptomatic
course of atherosclerosis, which at the later (diagnosed) stages often
requires surgery and responds weakly to conservative therapy [1].
Despite the existing treatment methods aimed at decreasing low-
density lipoprotein (LDL) cholesterol levels and restoring blood flow,
atherosclerosis remains a global medical and social problem. It is
generally accepted that atherosclerosis is a chronic inflammatory
disease of the arteries [2], but intracellular molecular mechanisms
that control such inflammation and disease progression are poorly
understood [3]. The atherosclerotic plagque formation is the key
event in its pathogenesis characterized by chronic inflammation,
endothelial dysfunction, lipid accumulation, and proliferation
of smooth muscle cells in the wall [4, 5].

The CDK8 and CDK19 cyclin-dependent kinases, being
part of the mediator complex, represent the key regulators of the
RNA polymerase ll-mediated transcription. Despite the fact that
their exact mechanisms of action are still poorly understood, it
is well known that CDK8/19 play a central role in transcriptional
reprogramming, which underlies cell differentiation and
pathogenesis of various diseases [6]. CDK8/19 are modulators
of the signaling pathways of transcription factors STAT1 and
NF-kB which play a critical role in inflammatory processes [7, 8.

Recently, the data linking CDK8 to cardiovascular disorders
has been accumulating. In particular, CDK8 is a co-regulator of
the HIF-1a (hypoxia-inducible factor 1-alpha) transcription
factor, the key mediator of the cellular response to hypoxia
contributing greatly to the atherosclerosis development
[9]. HIF-1a triggers expression of a broad range of genes
contributing directly to the development of atherosclerosis,
such as TNF, CD36, VEGF, ICAM-1, VCAM-1 [10-12].
Thus, HIF-1a mediates pro-atherogenic processes, such as
lipid metabolism disturbances in macrophages, endothelial
dysfunction, and enhanced inflammation [13]. Furthermore,
CDK8 is a negative lipid biosynthesis regulator. CDK8 induces
increased ubiquitination and degradation of SREBP through
phosphorylation of this protein. The SREBP family includes
the key transcription factors that regulate lipid metabolism,
including transcription of the genes responsible for cholesterol
synthesis and lipogenesis [14]. Since CDK8 regulates the
expression of many genes associated with atherogenesis, it
has been hypothesized than the CDK8 and/or CDK19 deletion
may result in the slower progression of atherosclerosis due to
the decrease in lipoprotein infiltration of the aortic intima.

Despite the well known CDK8/19 involvement in carcinogenesis
and immune response [15, 16], their role in atherogenesis is poorly
understood. In this regard, it seems promising to study the role
of the CDK8/19 transcription kinases, being the well- known
regulators of inflammation and contributors to cardiovascular
disorders, in the development of atherosclerosis. Thus, the study
aimed to assess the impact of the systemic and endothelium-
specific Cak8 knockout, as well as systemic Cadk79 knockout on
the formation of atherosclerotic lesions in the mouse aorta against
the background of the ApoE knockout, the well-known mouse
model of atherosclerosis [17].

METHODS
Keeping mice

The study involved the use of mice of the Rosa26/Cre-ERT2
(B6.129-Gt(ROSA)26Sortm1 (cre/ERT2)Tyj/d, Jackson Laboratory)
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and Tie2-Cre (B6.Cg-Tg(Tek-cre)1Ywa/J, Jackson Laboratory)
activator lineages. Mice of these lineages were crossed with
Cdksfl/fl (Jax:008463, Jackson Laboratory) with exon 2 in
the Cdk8 gene flanked by loxP sites to obtain Rosa26/Cre-
ERT2/Cdksfl/fl (systemic knockout) and Tie2-Cre/Cdksfl/fl
(endothelium-specific knockout). Furthermore, the C57BL/6N-
Cdk19 mice (RRID:MMRRC 047035-UCD, MMRRC) with the
constitutive Cdk719 knockout were used. Genotyping of the
Cdksfl/fl, C57BL/6N-Cdk19, Rosa26/Cre-ERT2 offspring
was conducted as reported earlier [18]. The experiments
involved mice of the above lineages against the background
of the ApoE-/- status (apolipoprotein E knockout). The mice
were a gift from Yury Kotelevtsev [19]. For genotyping of the
ApoE-/- and Tie2-Cre mice, the P1, P2, P3 and P4, P5, P6
oligonucleotide primers, respectively, were used (Table). All
primers were synthesized by Evrogen (Russia).

The mice were kept in the vivarium of the Institute of Gene
Biology RAS with permanent access to water and food. The
light/dark cycle was 12/12 h, air temperature — 23 + 1 °C,
humidity — 42 + 5%.

Cdk8 knockout induction

To induce Cdk8 knockout in the Rosa26/Cre-ERT2/Cdk8fl/
fl mice, intraperitoneal injections of tamoxifen (Sigma-Aldrich,
USA) dissolved in corn oil (Sigma-Aldrich, USA) were used
as previously reported [20]: males aged 2 months were
administered 0.15 mL of tamoxifen at a concentration of
20 mg/mL daily throughout 7 days. These mice were put on
the atherogenic diet (Western type diet, WTD) a month after the
knockout induction.

Experimental groups

The following experimental groups were formed of male mice of
the specified lineages aged 3 months (Fig. 1), a total of 46 animals:

1. ApoE — apolipoprotein E-deficient mice fed with standard
feed (negative control), n = 4;

2. ApoE WTD — ApoE-/- mice on the WTD (positive control
of atherosclerosis model for the Cdk19-/-/ApoE-/- n Tie2-Cre/
Cdk8fl/fl/ApoE-/- mice), n = 8;

3. ApoE + Oil WTD — ApoE-/- mice treated with corn oil
throughout 7 days (150 pL a day), which were on the WTD
(positive control of atherosclerosis model for the tamoxifen-
treated mice Rosa26/Cre-ERT2/Cdk8fl/Al), n = 5;

4. Rosa WTD — Rosa26/Cre-ERT2 mice on the WTD
(negative control of atherosclerosis model for the Rosa26/Cre-
ERT2/Cdksfl/fl mice), n = 4;

5. Tie WTD — Tie2-Cre mice on the WTD (negative control
of atherosclerosis model for the Tie2-Cre/Cdk8fl/fl/ApoE-/-
mice), n = 4;

6. Cdk19/ApoE WTD — mice with the Cdk79 knockout
against the background of the ApoE knockout, which were on
the WTD, n = 8;

7. Cdk8/Rosa/ApoE WTD — Rosa26/Cre-ERT2/Cdk8fl/fl
mice with the inducible Cdk8 knockout against the background
of the ApoE knockout, which were on the WTD, n = 6;

8. Cdk8/Tie/ApoE WTD — mice with the constitutive
endothelium-specific Cadk8 knockout against the background
of the ApoE knockout, which were on the WTD, n = 7.

Exclusion criteria

The experiment involved males only. Animals were excluded
from the experiment due to clinical status deterioration
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Fig. 1. Schematic representation of the experimental groups of mice used in the experiment

manifested by fatigue, apathy, refusal to eat, as well as in
cases of the animal’s spontaneous death before scheduled
euthanasia. A total of five animals were excluded based on
the latter criterion: two from group 1, one from groups 4, 5,
and 7.

Atherogenic diet

Adult mice in different experimental groups aged 3 months
were kept on the atherogenic diet. The diet composition was
as follows: 21.2% dairy fat (Parmalat, Russia), 34% sucrose
(Solarbio, China), and 0.2% cholesterol (Macklin, China) [21]. To
induce the development of atherogenic lesions, mice were kept
on the diet for 2 months.

Aortic examination

The mouse aorta separation and staining, as well as image
processing were conducted as previously reported [22]. The
mice were intraperitoneally anesthetized with the solution of
0.6 mL Zoletil (Virbac, France) + 0.3 mL Xylazine (Interchemie
Werken "de Adelaar" BV, Netherlands) + 9 mL saline (PanEco,
Russia) at the dose of 100 L per 10 g of the animal’s body
weight, then the cardiovascular system was perfused through
a puncture of the apex of the left ventricle with 10 mL of PBS
(BioinnLabs, Russia) to flush out blood. The Zeiss Stemi

Table. Oligonucleotides used in the study

DV4 stereo microscope (Carl Zeiss, Germany) was used to
accurately separate the entire aorta, from the arch to the iliac
arteries; perivascular adipose and connective tissues around the
aorta were removed, avoiding damage to these. To immobilize
tissues, perfusion with 10 mL of 4% paraformaldehyde solution
(Medix, Russia) was performed. Then the aorta was put in
1 mL of the freshly prepared 0% Oil Red O solution (Sigma-
Aldrich, USA) and incubated for 60 min at room temperature.
After staining, the specimen was washed with the 60%
isopropanol (Panreac AppliChem, Germany) for 20 min, then
triple washed with the distilled water for 5 min. The microscope
was used to completely clear the aorta of the remaining stained
perivascular adipose tissue, put it onto the slide, and acquire
high-resolution digital micrographs. The images obtained were
processed using the Imaged software tool. The percentage of
atherosclerotic lesions was calculated as the ratio of the area of
lesions to the total area of the ascending aorta and aortic arch.

Western blot

The CDK8 and CDK19 levels were assessed in the aortas of
mice in all of the studied groups. To detect CDK8 and CDK19,
the CDK8 (D6M3J) Rabbit 17395 antibody (Cell Signaling,
USA) and CDK19 antibody from the paper [18], respectively,
diluted 1 : 1000 were used. The B-actin protein levels were
determined as a load control. For that the mouse monoclonal

Sequence 5’ — 3’
P1 GCC TAG CCG AGG GAG AGC CG
P2 TGT GAC TTG GGA GCT CTG CAG C
P3 GCC GCC CCG ACT GCATCT
P4 CTG TGA CCT GAG TGC CCA GT
P5 GCG TTT AAG TAATGG GAT GGT C
P6 CCA CAC ACG TGC ACA TAT AGA
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anti-B-actin antibody (A2228, Sigma-Aldrich, USA) diluted
1: 1000 was used. Detection involved the use of the secondary
antibodies conjugated with horseradish peroxidase (HRP):
anti-rabbit IgG (catalogue number 7074, Cell Signaling, USA)
and anti-mouse IgG (catalogue number 7076, Cell Signaling,
USA) diluted 1 : 2000. Visualization of the Western blot assay
results was accomplished using the iBright FL1500 system
(Invitrogen, USA).

Statistical data processing

Significance of differences was assessed using one-way
ANOVA in GraphPad Prism 8.0.1 (GraphPad Software, USA).
The data are presented as the mean + standard error of the
mean.

RESULTS

In this study, the genetically modified mice with the systemic
and endothelium-specific knockout of the Cdk8 gene, as well
as with the systemic knockout of the Cdk79 gene were the
research objects. In the first phase of the study, the CDK8
and CDK19 protein levels in the aortas of mice of different
experimental groups were validated (Fig. 2).

It has been found out, that in the aortas of the ApoE,
Tie, and Rosa control mice, the CDK8 and CDK19 proteins
are detected, while in mice with the systemic Cadk8 knockout
(group Cdk8/Rosa/ApoE) there is no CDK8, and in mice with
the systemic Cadk79 knockout (group Cdk19/ApoE) there is no
CDK19. However, the CDK8 protein is detected in mice with
the endothelium-specific Cdk8 knockout (group Cdk8/Tie/
ApoE). The reported presence of protein is consistent with the
histological structure of the aorta consisting of three layers:
tunica adventitia, media, and intima, which is constituted
mainly by the endothelium [23]. Thus, in this group the Cadk8
knockout affects mainly endothelial cells of the intima, which
explains detection of the CDK8 protein in the homogenate of
the entire aorta.

Then aortas were assessed in mice of all experimental
groups after being kept on the atherogenic diet throughout
2 months. The values reported for the mice of the experimental
groups Cdk19/ApoE WTD and Cdk8/Tie/ApoE WTD were
compared to the values of the group ApoE WTD representing
a positive control in the experiment and to the values of groups
Tie WTD and ApoE kept on the standard diet representing a
negative control (Fig. 3).

It has been found out that in the group of mice with the
endothelium-specific Cadk8 knockout there is a significant
(o = 0.0295) reduction of the aortic lesion compared to the
ApoE positive control. Furthermore, in the group with the
systemic Cadk79 knockout the lesion area does not differ from
that in control groups.

When inducing the Cdk8 knockout in the Cdk8/Rosa/ApoE
group, the mice received injections of tamoxifen dissolved in
corn oil daily. To create positive controls for this group, the
ApoE mice treated with corn oil in accordance with the same
scheme were used. After keeping on the atherogenic diet,
atherosclerotic lesions of the aorta were assessed in the Cdk8/
Rosa/ApoE WTD, ApoE + Oil WTD mice as a positive control;
Rosa WTD, as well as ApoE on the standard diet as a negative
control (Fig. 4).

[t has been found out, that the values obtained in mice with
the systemic Cdk8 knockout are significantly (o = 0.0024) lower
compared to the positive control values and do not differ from
the negative control values.
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Fig. 2. Representative Western blot image showing the content of CDK8 and
CDK19 in the aortas of mice of different experimental groups

DISCUSSION

Genetically modified animals represent a common tool
for modeling and further investigation of pathogenesis of
human disorders, as well as for the development of therapy
methods [24]. This determines their important role in the
study of such socially significant disorders, as atherosclerosis.
Atherosclerosis, as a chronic progressive disorder, underlies
most cases of cardiovascular disorders, which determines high
mortality and disability rates in the population [25].

It is well known that the CDK8 transcription kinase and
its paralogue CDK19 modulate signaling pathways of the
STAT1 and NF-kB transcription factors, thereby regulating the
inflaonmatory response. In a number of studies, it has been
shown that the low molecular weight CDK8/19 inhibitors, such
as SenexinA/B, Cmpd3/4, Cpd32, Cortistatin A, effectively
suppress activation of the key pro-inflammatory transcription
factors STAT1 and NF-kB in vitro and in vivo [7, 8, 26, 27].
Furthermore, the role of CDK8 in the pathogenesis of
cardiovascular disorders has been shown, since this kinase is
a co-regulator of HIF-1a involved in pro-atherogenic processes
[9, 10, 28].

This research was focused on studying the role of the
CDK8 and CDK19 transcription kinases in the atherosclerotic
lesion formation using the genetically modified mice with the
systemic and endothelium-specific Cadk8 knockout, as well as
with the systemic Cdk79 knockout. To model accumulation
of lipoproteins in the aortic wall, these mice were put against
the ApoE knockout background. The ApoE gene encodes the
apolipoprotein E protein playing a central role in lipoprotein
metabolism. One of its main functions is to serve as a ligand
for the hepatic receptors that remove chylomicron and LDL
remnants from the bloodstream. The ApoE-/- mice have no key
mechanism for blood plasma purification from cholesterol-rich
lipoproteins, which results in the dramatic increase in plasma
cholesterol levels, LDL accumulation in blood, and subsequent
development of atherosclerotic lesions [17].

The Cdk8 and Cdk19 knockout in the aortas of the mice
assessed was confirmed by Western blot assay (Fig. 2). It was
shown that there were no CDK19 in the group of the CDK19/
ApoE mice with the systemic Cdk79 knockout, no CDKS8 in
the group of the CDK8/Rosa/ApoE mice with the systemic
Cadk8 knockout, and incomplete CDK8 removal in the CDK8/
Tie/ApoE group with the endothelium-specific Cdk8 knockout.
Thus, we have shown that these models are relevant.

The study of the lipid inclusion accumulation in the aortas
of experimental mice has shown that both endothelium-specific
(Fig. 3) and systemic (Fig. 4) Cadk8 knockout results in significant
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Fig. 3. Aorta assessment in mice of experimental groups ApoE WTD, Cdk19/ApoE WTD, Cdk8/Tie/ApoE WTD, Tie WTD, as well as ApoE fed with standard feed.
Representative image of the studied aortas (on the left), diagram of the affected area calculation (on the right). The aortic lesions are marked with white dotted lines

(*—p < 0.05)

reduction of the vascular lesion area. Furthermore, the tota/ Cdk8
knockout has a stronger anti-atherogenic effect compared to
the endothelium-specific one. The data obtained suggest that
the CDK8 contribution to the atherosclerosis pathogenesis is
not limited to endothelial cells; it is also mediated by its function
in the key cell types for this disorder, such as macrophages
and possibly vascular smooth muscle cells. These findings
are consistent with the literature data showing the decrease
in the anti-inflammatory response upon CDK8/19 inhibition
in monocytes/macrophages [29]. According to the results
obtained, CDK8 is involved in the atherosclerotic phenotype
enhancement, possibly through regulation of the transcription
programs associated with the inflammatory response and lipid
metabolism.

In contrast to Cdk8, the systemic Cdk79 inactivation had
no significant effect on the area of the aortic atherosclerotic
lesions, which demonstrates the values comparable to that

ApoE + Oil
WTD

Cdk8/Rosa/ApoE
WTD

ApoE
standard diet

of both negative and positive control groups (Fig. 3). It should
be noted, that in the Cdk19/ApoE group, a significant inter-
individual variability was observed, including specimens with
both large and minimal lesion areas. Such a distribution, along
with the lack of the general effect, suggests that CDK19, in
contrast to its paralogue CDK8, does not determine the
atherosclerosis progression.

Chronic inflammation is a cornerstone of the atherosclerosis
pathogenesis [2], and our results clearly indicate the CDK8
pro-atherogenic role. Considering the fact that CDK8 is an
inflammatory response regulator [6-8], it can be assumed
that pharmacological inhibition of this kinase will reproduce
the reported anti-atherogenic effect by suppressing pro-
inflammmatory signaling pathways. Thus, the use of the well-
known CDK8 inhibitors in experimental atherosclerosis
models seems to be a promising area for the development of
novel therapeutic approaches.

50 *p=0.0106
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Fig. 4. Aorta assessment in mice of experimental groups ApoE + Oil WTD, Cdk8/Rosa/ApoE WTD, Rosa WTD, as well as ApoE fed with standard feed. Representative
image of the studied aortas (on the left), diagram of the affected area calculation (on the right). The aortic lesion is marked with the white dotted line (*— p < 0.05,

* __p<001)
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CONCLUSIONS

The study conducted discloses the fundamental atherogenesis
regulation aspects related to the function of the CDK8 and
CDK19 transcription kinases. The use of genetic models in the
ApoE~/~ mice with the knockout of the above genes has shown
that CDK8 functions as a pro-atherogenic regulator, which is
confirmed by significant reduction of the atherosclerotic lesion
area in knockout mice. The stronger anti-atherogenic effect of
the systemic knockout compared to the endothelium-specific
one suggests the pleiotropic nature of the CDK8 impact
on the disease pathogenesis, including its role in not only
endothelial cells, but also other cell populations, specifically
in macrophages. The CDK8 pro-atherogenic effect molecular
mechanisms are likely to be related to its capability of regulating
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