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ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ    ИММУНОЛОГИЯ

М. А. Плотникова, В. А. Олейник, С. А. Клотченко

ПРОТИВОВИРУСНАЯ АКТИВНОСТЬ мРНК, КОДИРУЮЩИХ ВНУТРИКЛЕТОЧНЫЕ SCFV-ФРАГМЕНТЫ 
АНТИТЕЛ К КОНСЕРВАТИВНЫМ ЭПИТОПАМ ВИРУСА ГРИППА

Один из перспективных подходов к эффективной борьбе с гриппом — терапия с использованием моноклональных антител. Целью работы было 

провести оценку противовирусного действия внутриклеточных scFv-фрагментов антител, которые были трансфицированы в клетку в виде экзогенной 

мРНК, транслировались и были способны к высокоаффинному связыванию с вирусными антигенами непосредственно внутри клетки. В качестве 

вирусных мишеней были выбраны два белка вируса гриппа — гемагглютинин (антитело FI6) и нуклеопротеин (антитело 2/3). Каждый из scFv-фрагментов, 

кодируемых мРНК, был получен в двух формах: с сигнальным пептидом (SP) для секреции во внеклеточное пространство (scFv-SP) и без него (scFv-WO) — 

для внутриклеточного функционирования в цитозоле. Показана различная локализация этих белков в клетке: scFv-SP обнаруживались в областях, 

характерных для эндоплазматического ретикулума и комплекса Гольджи, в то время как scFv-WO были диффузно распределены по цитоплазме. 

Продемонстрировано, что мРНК, кодирующие scFv-FI6-SP и scFv-2/3-SP, а также мРНК, кодирующая scFv-2/3-WO, проявляли противовирусное 

действие в отношении вируса гриппа А на клеточной модели. Наибольшим противовирусным эффектом обладала мРНК scFv-FI6-SP: она приводила 

к снижению вирусной нагрузки относительно контроля примерно в 10 раз. В отношении вируса гриппа В обе мРНК, кодирующие scFv-2/3 (как с SP, 

так и без него), приводили к снижению вирусной нагрузки в среднем на 50% относительно контроля. Таким образом, показано, что внутриклеточные 

антитела обладают высоким противовирусным потенциалом и открывают возможности для воздействия на новые, перспективные вирусные мишени, 

которые ранее были недоступны для лекарственной терапии.
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Plotnikova MA, Oleynik VA, Klotchenko SA

ANTIVIRAL ACTIVITY OF mRNAS ENCODING INTRACELLULAR SCFV ANTIBODIES AGAINST CONSERVED 
INFLUENZA VIRUS EPITOPES

Monoclonal antibody therapy is one of the most promising approaches for effective influenza control. In this study, we evaluated the antiviral activity of exogenous 

mRNA-encoded single-chain variable fragment (scFv) antibodies, which are capable of binding viral antigens inside the cell with high affinity. Two influenza virus 

proteins, hemagglutinin (antibody FI6) and nucleoprotein (antibody 2/3), were chosen as targets. Each scFv encoded by mRNA was produced in two variants: one 

containing a signal peptide (SP) to direct secretion into the extracellular space (scFv-SP) and one lacking the signal peptide (scFv-WO) for cytosolic localization and 

function. These variants showed distinct intracellular localization patterns: scFv-SP localized to regions characteristic of the endoplasmic reticulum and the Golgi 

complex, whereas scFv-WO was distributed diffusely throughout the cytoplasm. mRNAs encoding scFv-FI6-SP, scFv-2/3-SP, and scFv-2/3-WO exhibited antiviral 

activity against influenza A virus in vitro. The scFv-FI6-SP mRNA showed the strongest antiviral effect, reducing viral load by approximately tenfold compared to 

the control. For influenza B virus, both  scFv-2/3 mRNA variants, with and without the signal peptide,  reduced viral load by an average of 50%. These findings 

highlight the antiviral potential of intracellular antibodies and point to new opportunities for targeting viral components that are not accessible to conventional 

antiviral therapies.
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Согласно данным Всемирной организации здравоохранения, 
вплоть до 2021 г. грипп оставался третьей по значимости 
причиной смерти от инфекций, вызывая до 350 тыс. 
смертей во всем мире [1]. Пандемия COVID-19 изменила 
эпидемиологию респираторных вирусных инфекций, 
однако на сегодняшний день грипп является весьма 
распространенной причиной возникновения тяжелых 
пневмоний, особенно у детей и людей старше 70 лет. Вирусы 
гриппа, обладающие высоким зоонозным потенциалом и 
способностью преодолевать межвидовые барьеры, несут 
в себе серьезную угрозу возникновения новых пандемий.

Современная стратегия противодействия гриппу в 
значительной степени основана на вакцинопрофилактике. 
Однако эффективность этого подхода ограничена 
сложностью прогнозирования штаммов, которые будут 
доминировать в следующем эпидемическом сезоне. Эти 
ограничения подчеркивают необходимость разработки 
новых терапевтических подходов.

Моноклональные антитела, благодаря своей способности 
специфично связываться с молекулярными мишенями и 
модулировать биологические функции, в том числе блокируя 
взаимодействия между белками, являются перспективными 
кандидатами для создания противовирусных препаратов. 
Существующие методы терапии с использованием 
моноклональных антител в значительной степени ограничены 
воздействием на внеклеточные мишени. Современные генно-
инженерные подходы и технологии позволяют, тем не менее, 
оценить терапевтический потенциал внутриклеточного 
применения рекомбинантных антител или их фрагментов. 
Такая стратегия дает возможность использовать в качестве 
мишеней консервативные и функционально более уязвимые 
антигены вируса, обычно недоступные для стандартных 
терапевтических подходов.

В работах 1980–1990-х гг. было показано, что зрелые 
антитела стабильны и функциональны при введении 
их непосредственно в цитозоль [2–4], что открыло новые 
возможности использования антител для подавления 
функций антигенов внутри живых клеток. Так, два 
моноклональных антитела, специфично связывающих 
альфа- и бета-тубулин, в течение 1,5 ч после микроинъекции 
в живую клетку вызывали разрушение и агрегацию 
микрофиламентов [3].

Тем не менее системная доставка внутрь клетки 
достаточно крупных белков, таких как антитела, все еще 
представляет большую проблему [5]. Подход, основанный 
на использовании стабильной экспрессии моноклональных 
антител неиммунными клетками млекопитающих для 
инактивации антигенов непосредственно внутри клетки, 
кажется более перспективным [6].

Известно, что формирование правильной конформации 
антител обеспечивают шапероны, локализованные 
в эндоплазматическом ретикулуме (ЭПР), куда цепи 
антител направляются посредством сигналов активного 
транспорта [7]. Еще в процессе синтеза белка на рибосоме 
локализованные на его N-конце сигнальные пептиды (SP), 
состоящие из 5–30 аминокислот, связываются сигнальной 
распознающей частицей, которая обеспечивает транслокацию 
растущей полипептидной цепи в просвет ЭПР [8, 9]. После 
прохождения через мембрану ЭПР сигнальный пептид 
расщепляется сигнальной пептидазой.

Отсутствие SP в полипептидных тяжелых и легких цепях 
рекомбинантного иммуноглобулина удержит антитело в 
цитозоле, однако с большой долей вероятности приведет 
к неправильному фолдингу и потере иммуноглобулином 
его функциональности [10, 11].

Селективные связывающие свойства с сохранением 
функциональности могут быть реализованы в более 
компактных форматах антител (28 кДа), таких как 
одноцепочечные вариабельные фрагменты (single chain 
variable fragments, scFv). Функциональные исследования 
продемонстрировали, что scFv способны правильно 
сворачиваться и собираться в цитозоле, даже несмотря 
на то, что шапероны, которые обычно помогают в 
этом процессе, локализованы исключительно в ЭПР, 
а восстановительная среда цитозоля не способствует 
образованию дисульфидных связей [12].

Цель данного исследования заключалась в разработке 
и оценке противовирусной активности синтетических 
мРНК, кодирующих высокоаффинные scFv-фрагменты 
антител против вируса гриппа. В качестве мишеней были 
выбраны два ключевых вирусных белка: поверхностный 
гемагглютинин и внутренний нуклеопротеин. При дизайне 
мРНК использовалась стратегия, предусматривающая либо 
секрецию scFv-фрагментов для нейтрализации вирусных 
частиц, либо их накопление в цитоплазме для подавления 
репликации вируса внутри инфицированной клетки.

МАТЕРИАЛЫ И МЕТОДЫ

Конструирование scFv-фрагментов антител

Получение экспрессионных конструкций, кодирующих 
scFv-фрагменты антител FI6 и 2/3, было выполнено 
нами ранее [13]. Для получения экзогенных мРНК 
фрагменты ДНК, кодирующие scFv нужной длины, были 
амплифицированы с использованием соответствующих 
праймеров («Евроген»; Россия) и вставлены методом 
рестрикции по сайтам BstPA I/Bmt I («Сибэнзим»; Россия) 
с последующим лигированием в векторную систему 
pIVTS3, которая была разработана в ФГБУ «НИИ гриппа 
им. А. А. Смородинцева» Минздрава России на основе 
вектора pIVT (NovoPro Bioscience; Китай). Вектор pIVTS3 
содержит T7-промоторную область, 5′- и 3′-UTR, а также 
poly(dA/dT)-последовательность. Лигазные смеси были 
использованы для трансфекции компетентных клеток 
E. coli (штамм NEB Stable; NEB; Великобритания) с 
последующим высевом их на селективную (содержащую 
100 мкг/мл ампициллина) агаризованную среду. 
Сформировавшиеся суточные колонии были проверены 
методом ОТ-ПЦР. Плазмиды со вставками нужного 
размера были накоплены в жидкой среде LB и очищены 
с использованием набора Plasmid Miniprep 2.0 («Евроген»; 
Россия). Последовательности разработанных плазмидных 
конструкций для получения экзогенных мРНК методом 
in vitro транскрипции были подтверждены методом 
секвенирования по Сэнгеру компанией «Евроген» (Россия).

In vitro транскрипция (IVT)

Препараты экзогенных мРНК были получены с 
использованием «Набора для синтеза мРНК in vitro (с ΨTP, 
m5CTP и m7GmAmG)» («Биолабмикс»; Россия). В качестве 
матрицы использовали 1 мкг плазмиды, предварительно 
линеаризованной по сайту Ahl I («Сибэнзим»; Россия). 
Реакцию проводили строго в соответствии с инструкцией 
к набору. После проведения реакции в смесь вносили 2 ед. 
TURBO DNase (Thermo Fisher Scientific; США) и инкубировали 
еще 30 мин при 37 °C для расщепления двухцепочечной 
плазмидной ДНК. Полученный препарат мРНК очищали 
из реакционной смеси методом переосаждения в хлориде 
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лития. Концентрацию полученных экзогенных мРНК измеряли 
с использованием спектрофотометра NanoDrop ND-1000 и 
флуориметра Qubit 4 (Thermo Fisher Scientific; США).

Электрофорез в агарозном геле

Плазмидную ДНК (в том числе линеаризованную) 
анализировали методом электрофореза в 0,8%-м агарозном 
геле в 1× TAE-буфере, содержащем 0,5 мкг/мл бромистого 
этидия. Образцы ДНК смешивали с 6× буфером для 
нанесения и загружали в лунки геля.

Для анализа целостности и качества мРНК использовали 
электрофорез в денатурирующем 1%-м агарозном геле. 
Подготовка образцов заключалась в смешивании 200–500 нг 
мРНК с Gel Loading Buffer II (Invitrogen; США) и термической 
денатурации (70 °C, 5 мин) перед внесением в гель, 
содержащий бромистый этидий. Разделение проводили в 
буфере MOPS при комнатной температуре.

Изображения гелей регистрировали с использованием 
системы визуализации Gel Doc EZ Imager (Bio-Rad; США).

Трансфекция клеточных культур экзогенными мРНК

В работе использовали перевиваемые клеточные линии: 
A549 (карцинома легкого человека) из коллекции ATCC 
(American Type Culture Collection; США; #CCL-185) и MDCK 
(клетки почки собаки) из коллекции IRR (International Reagent 
Resource; США; #FR58). Клетки A549 культивировали на 
питательной среде F12K (Gibco; США) с добавлением 
10% эмбриональной сыворотки коров, SC (Gibco; США); 
MDCK — на среде альфа-МЕМ («Биолот»; Россия) 
с добавлением SC до 5%. Ведение культур и все 
эксперименты проводили без добавления антибиотиков.

Для трансфекции экзогенными мРНК использовали 
суточный 90–100% монослой клеток, ростовую среду 
непосредственно перед внесением мРНК заменяли на 
бессывороточную. Трансфекцию клеток проводили с 
использованием коммерческого трансфекционного 
реагента GenJector-U («Молекта»; Россия) согласно 
инструкции производителя. В лунки 96-луночного планшета 
липоплексы (комплексы РНК/трансфекционный агент) 
вносили в объеме 10 мкл, содержащем по 100 нг мРНК 
и 0,3 мкл трансфекционного реагента. В зависимости от 
задач эксперимента инкубацию клеток с липоплексами 
проводили в течение 2–48 ч при 37 °C и 5% СО

2
.

Окраска эукариотических клеток 
для флуоресцентной микроскопии

Флуоресцентное окрашивание проводили через 24 ч после 
трансфекции экзогенными мРНК эукариотических клеток, 
рассеянных в лунки стеклянной слайд-камеры Lab-Tek 
II (Nunc; США). Для этого монослой клеток промывали 
DPBS, фиксировали 4%-м раствором параформальдегида 
в течение 10 мин и пермеабилизовали 0,1%-м раствором 
Triton X-100 (Sigma-Aldrich; США). Блокирование 
осуществляли раствором 1%-го бычьего сывороточного 
альбумина на DPBS в течение ночи при 4 °C. Окраску ядер 
проводили раствором DAPI (AppliChem; США), актинового 
цитоскелета — раствором фаллоидина, ковалентно 
связанного с родамином (Thermo Fisher Scientific; США). 
Для визуализации scFv-фрагментов антител использовали 
первичные мышиные моноклональные антитела Penta-
His (Qiagen; США) к последовательности 6×His-tag в 
разведении 1 к 1000 и вторичные антитела Goat anti-Mouse, 

меченные флуоресцентным красителем Alexa Fluor 488, в 
конечной концентрации 0,5 мкг/мл. Микроскопию клеток 
проводили с использованием системы визуализации 
клеток Cytell последовательно по каналам Blue, Green и 
Orange (GE Healthcare; США).

Иммуноферментный анализ (ИФА)

Измерение уровня scFv-фрагментов антител в клеточной 
среде проводили методом ИФА. В качестве лиганда для 
сорбции использовали вирусный концентрат, разведенный 
в буфере PBS до концентрации 2 мкг/мл (штаммы вирусов 
гриппа A/California/07/09 (H1N1pdm) и B/Phuket/3073/13 
(Yamagata)). Растворы лигандов в объеме 100 мкл вносили в 
лунки 96-луночного планшета Microlon High Binding (Greiner 
Bio-One; Германия) и инкубировали при температуре 
4 °C в течение ночи (12–18 ч). После этого проводили 
трехкратную отмывку планшетов буфером PBST (PBS 
с добавлением Tween 20 до 0,05%) с использованием 
автоматического промывателя планшетов ELx405 
(BioTek; США). Далее сорбирующую поверхность лунок 
блокировали 5%-м раствором сухого обезжиренного 
молока Blotting-Grade Blocker (Bio-Rad; США) в PBST 
(далее «блокирующий реагент») в термошейкере MB100-4A 
(Allsheng, Китай) при температуре 37 °C в течение 1 ч, 
по 200 мкл в лунку, и проводили отмывку. Затем в лунки 
микропланшета вносили тестируемые культуральные 
жидкости (КЖ) в объеме 100 мкл, разведенные один 
к двум на блокирующем реагенте, инкубировали при 
температуре 37 °C в течение 2 ч и проводили отмывку. 
Связавшиеся с антигеном scFv-фрагменты детектировали 
с использованием антител к последовательности 6×His-
tag, конъюгированных с пероксидазой хрена, His17-HRP 
(Hytest; Россия), разведенных 1 к 2000 на блокирующем 
реагенте, при температуре 37 °C в течение 1 ч по 100 мкл
в лунку. Далее проводили отмывку и проявляли 
пероксидазную реакцию добавлением в каждую лунку по 
100 мкл субстрата тетраметилбензидина (ТМБ) («Хема»; 
Россия). После остановки цветной реакции добавлением в 
каждую лунку по 100 мкл 2Н H

2
SO

4
 измеряли оптическую 

плотность при длинах волн 450 нм (OD
450

) и 620 нм (OD
620

) 
на микропланшетном спектрофотометре Multiskan SkyHigh 
(Thermo Fisher Scientific; США). Статистический анализ 
первичных данных проводили в программных пакетах 
Microsoft Office Exсel 2010 (США) и GraphPad Prism 8 
(GraphPad Software; США).

Вестерн-блоттинг

Для сбора клеточных лизатов MDCK использовали 
экстракционный буфер, содержащий два компонента — 
Extraction Buffer 5× PTR и Extraction Enhancer Buffer 50× 
(Abcam; США). По 50 мкл приготовленного охлажденного 
1× экстракционного буфера добавляли в лунки к монослою 
отмытых DPBS клеток, планшет инкубировали в течение 
30 мин на льду и собирали содержимое лунок в пробирки. 
Образцы осветляли в течение 30 мин при 4 °C и 13 800 g 
на центрифуге 5415R (Eppendorf; Германия). Полученный 
осветленный супернатант смешивали с денатурирующим 
буфером Лэммли, прогревали в течение 10 мин при 95 °C, 
вносили в лунки предзалитого геля Any kD Mini-PROTEAN 
TGX Stain-Free Protein Gel (Bio-Rad; США) и разделяли в 
денатурирующих условиях. Далее для переноса геля на 
мембрану использовали систему полусухого блоттинга 
Trans-Blot Turbo Transfer System и наборы для блоттинга 
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Trans-Blot Turbo Mini 0.2 µm Nitrocellulose Transfer Packs, 
содержащие нитроцеллюлозную мембрану 0,2 мкм (Bio-Rad;
США). Мембраны после переноса инкубировали в 
блокирующем реагенте в течение ночи при 4 °C, затем 
в течение 2 ч при 37 °C с первичными антителами Penta-His
(Qiagen; США) к последовательности 6×His-tag,
разведенными 1 к 2000 на блокирующем реагенте. 
После этого мембрану отмывали в PBST и инкубировали 
в течение 1 ч при 37 °C со вторичными антителами Goat 
anti-Mouse, конъюгированными с пероксидазой хрена, 
GAM-HRP (Bio-Rad; США), разведенными 1 к 2000 на 
блокирующем реагенте. Проявку белков осуществляли 
с использованием субстрата для хемилюминесцентной 
детекции вестерн-блоттинга Clarity Western ECL Substrate 
(Bio-Rad; США), регистрацию результатов проводили на 
системе визуализации ChemiDoc MP (Bio-Rad; США). В 
качестве отрицательного контроля использовали лизат 
клеток, трансфицированных мРНК, которая кодировала 
тяжелую цепь иммуноглобулина к нерелевантному антигену.

Противовирусные эксперименты

Для оценки противовирусного действия экзогенных мРНК, 
кодирующих scFv-фрагменты антител, была использована 
лечебно-профилактическая схема. Для этого суточный 
монослой клеток MDCK промывали стерильным 
раствором DPBS (для удаления компонентов сыворотки, 
ингибирующей репродукцию вируса), а затем в лунки 
вносили по 100 мкл свежей среды альфа-МЕМ («Биолот»; 
Россия), содержащей по 10 мкл липоплексов, которые 
были приготовлены с использованием коммерческого 
трансфекционного реагента GenJector-U («Молекта»; 
Россия) согласно инструкции производителя. На 1 
лунку 96-луночного планшета (примерно 5 × 104 клеток) 
приходилось по 100 нг мРНК и 0,3 мкл трансфекционного 
реагента. Далее клетки инкубировали 6 ч при температуре 
37 °С и 5% СО

2
.

Инфицирование проводили методом контакта клеток 
с 50 мкл вируссодержащей среды в течение 1 ч при 
температуре 37 °С и 5% СО

2
. В работе использовали 

эталонные штаммы вирусов гриппа человека из коллекции 
ФГБУ «НИИ гриппа им. А. А. Смородинцева» Минздрава 
России: A/California/07/09 (H1N1pdm), A/Cambodia/
e0826360/2020 (H3N2), B/Phuket/3073/13 (Yamagata) и 
B/Malaysia/2506/2004 (Victoria) с исходными инфекционными 
титрами 6 × 108 TCID

50
/мл; 3,16 × 107 TCID

50
/мл; 3,16 × 106 

TCID
50

/мл и 1,0 × 108 TCID
50

/мл соответственно.
Для инфицирования использовали разведения вирусов 1 

к 1000, что соответствовало множественности заражения 
от 0,1 до 1 MOI.

После инкубации вируссодержащую жидкость удаляли 
и на клетки наслаивали исходную трансфекционную среду, 
содержащую липоплексы. После инфицирования клетки 
инкубировали в течение 24 ч при температуре 37 °С и 5% 
СО

2
. Далее проводили детекцию вирусных частиц: в КЖ с 

использованием реакции гемагглютинации по стандартной 
методике [14], в клетках — методом внутриклеточного ИФА 
(In-Cell ELISA).

Внутриклеточный ИФА

Оценку содержания вирусных частиц в клетках проводили 
методом внутриклеточного ИФА, следуя описанному выше 
протоколу ИФА с небольшими изменениями. Если коротко, 
то 96-луночные планшеты с зараженными клетками 

фиксировали 80%-м ацетоном в DPBS по 50 мкл в лунку в 
течение 30 мин при температуре 4 °C. После промывки 
PBST лунки инкубировали в блокирующем реагенте при 
температуре 37 °C в течение 1 ч, по 200 мкл в лунку, и 
проводили отмывку. Затем в лунки микропланшета вносили 
первичные мышиные моноклональные антитела против 
нуклеопротеина вирусов гриппа А и В [15], разведенные 
до концентрации 0,5 мкг/мл на блокирующем реагенте, 
по 100 мкл в лунку, инкубировали при температуре 37 °C
в течение 1 ч и проводили отмывку. Связавшиеся 
с вирусными частицами антитела детектировали с 
использованием вторичных антител Goat anti-Mouse, 
конъюгированных с пероксидазой хрена, GAM-HRP 
(Bio-Rad; США), разведенных 1 к 2000 на блокирующем 
реагенте, по 100 мкл в лунку при температуре 37 °C 
в течение 1 ч и проводили отмывку. Проявку и учет 
результатов осуществляли аналогично описанному выше 
методу ИФА.

Статистическая обработка результатов

Оценку статистической достоверности различий проводили 
при помощи компьютерной программы GraphPad Prism 8 
(GraphPad Software; США) с использованием одношагового 
анализа ANOVA с тестом Холма–Шидака для множественных 
сравнений. Различия считали статистически значимыми при 
значении р < 0,05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Конструирование и получение экзогенных мРНК, 
кодирующих scFv-фрагменты антител

В качестве объектов исследования были выбраны 
антигенраспознающие участки антител в формате scFv, 
разработанные нами ранее [13]. В частности, один из них, 
а именно scFv-FI6 — специфически выявляет стеблевой 
участок гемагглютинина (HA), консенсусный для вирусов 
гриппа А (ВГА) обеих филогенетических групп [16], второй, 
scFv-2/3 — специфично связывает нуклеопротеины (NP) 
вирусов гриппа В (ВГB) обеих генетических линий [17].

scFv содержали вариабельные домены исходных 
полноразмерных рекомбинантных антител в направлении 
от фрагмента легкой цепи к тяжелой, соединенные 
линкером, состоящим из четырех тандемных копий G

4
S. 

Для секреции во внеклеточное пространство N-конец 
каждого scFv-фрагмента содержал сигнальный 
пептид (SP) из соответствующей легкой цепи исходного 
антитела (их обозначили как scFv-SP). В качестве 
SP были использованы следующие аминокислотные 
последовательности: MKSQTQVLVFLLLCVSGAHG — 
для scFv-FI6-SP и MDFQVQIFSFLLISASVIISRG — для 
scFv-2/3-SP. Для накопления внутри клетки каждый 
из scFv-фрагментов был также сконструирован в 
виде полипептида без SP (scFv-WO). Открытая рамка 
считывания (ORF) таких scFv-фрагментов начиналась 
со стартового кодона ATG, кодирующего метионин, 
после которого встык начиналась последовательность, 
кодирующая вариабельный домен легкой цепи. scFv-SP и 
scFv-WO отличались только наличием или отсутствием SP 
на N-конце. Все рекомбинантные scFv-фрагменты антител 
были снабжены С-концевыми гексагистидиновыми 
метками для последующей детекции (рис. 1A, Б). На 
основе разработанного дизайна последовательностей 
были получены плазмидные конструкции, содержащие 
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T7-промоторный участок для получения мРНК методом in 
vitro-транскрипции (IVT).

Технология мРНК была использована для трансляции 
внутриклеточных scFv-фрагментов антител в неиммунных 
клетках эукариот. мРНК была получена методом IVT и 
состояла из пяти стандартных элементов: на 5′-конце 
оптимизированный аналог кэп-структуры m7GmAmG 
(CleanCap; TriLink BioTechnologies; США), далее 
5′-нетранслируемая область (UTR), потом ORF scFv, 3′-
UTR и поли(А)-хвост, кодируемый встроенной в плазмиду 
poly(dA/dT)-последовательностью (рис. 1В). Для снижения 
иммуногенности и повышения стабильности мРНК 
содержала модифицированные нуклеотиды, такие как 
псевдоуридин (ΨTP) и 5‐метилцитидин (m5CTP).

Полученные и очищенные препараты: четыре мРНК, 
кодирующие scFv-фрагменты антител FI6 и 2/3 против ВГА и 
ВГВ, с SP и без него, а также еще одна мРНК, используемая 
далее в экспериментах в качестве отрицательного 
контроля и кодирующая тяжелую цепь иммуноглобулина 
к нерелевантному антигену, — были охарактеризованы 
спектрофотометрически и электрофоретически в 
агарозном геле (рис. 1Г). Было показано, что длины мРНК 
соответствовали расчетным, а чистота и целостность 
полученных мРНК были достаточными для эффективной 
трансляции целевых белков.

Функциональные свойства scFv-фрагментов антител, 
кодируемых экзогенными мРНК

Мы оценили трансляционную активность полученных 
экзогенных мРНК, кодирующих scFv-фрагменты антител, 
в эукариотических клеточных линиях MDCK и A549. 
Для этого через 24 ч после трансфекции мРНК отбирали 
КЖ, а клетки подвергали лизису и оценивали в лизатах 
уровень белков с гистидиновой меткой методом вестерн-
блоттинга.

Через 24 ч после трансфекции клеток MDCK мРНК, 
кодирующей scFv-SP, в КЖ с использованием антител 
к последовательности 6×His-tag нам удалось достоверно 
детектировать белки ожидаемой молекулярной массы 

(~28 кДа), соответствующие мономерным scFv-фрагментам
антител (рис. 2А). Детекция scFv-продуктов в клеточных 
лизатах была затруднена: как в случае scFv-SP, 
так и scFv-WO, были выявлены неспецифические 
высокомолекулярные полосы (~55 кДа), присутствующие и 
в отрицательном контроле. Ферментативная амплификация 
сигнала и значительное увеличение времени выдержки 
позволили выявить внутри клетки продукцию scFv-SP 
(рис. 2А, дорожка 3), но не scFv-WO (рис. 2А, дорожка 4). 
Таким образом, трансфекция мРНК, кодирующей scFv-SP, 
приводила через 24 ч к секреции зрелых scFv-фрагментов 
в мономерной форме, которые обнаруживались как в КЖ, 
так и в клеточных лизатах.

Предполагая, что внутриклеточные scFv-фрагменты 
антител могут быть нестабильны, а период их полувыведения 
может достигать всего нескольких часов, мы исследовали 
их продукцию в клеточных лизатах в динамике: через 2, 4, 
6, 8 и 12 ч после трансфекции клеток экзогенными мРНК. 
Было показано, что пик трансляции для обоих scFv (как 
с сигналом секреции, так и без него) наблюдался через 
6 ч после трансфекции мРНК (рис. 2Б). При этом периоды 
полувыведения внутриклеточных scFv существенно 
различались в зависимости от наличия или отсутствия SP. 
Так, антитела scFv-SP были выявлены в клетках уже через 
2 ч после трансфекции, далее наблюдали возрастание 
их продукции к 6 ч и резкое снижение к 12 ч. В случае 
scFv-WO белок обнаруживался в клетках на минимально 
детектируемом уровне через 4 ч после трансфекции, его 
количество достигало пика к 6 ч, а через 8 ч снижалось до 
предела детекции метода.

Далее мы оценили динамику накопления фрагментов 
scFv-SP в КЖ от клеток A549, трансфицированных 
соответствующими экзогенными мРНК (рис. 2В). Для этого 
был проведен ИФА, в котором в качестве захватывающих 
лигандов выступали вирусные концентраты, представляющие 
собой очищенные инактивированные вирусы гриппа А 
и B. Детекцию проводили с использованием антител 
к последовательности 6×His-tag, конъюгированных с 
пероксидазой хрена. Концентрации scFv-фрагментов 
антител были оценены по калибровочной кривой, 

Рис. 1. Принципиальное строение разработанных scFv-фрагментов антител против вирусов гриппа А и В и кодирующих их экзогенных мРНК. А. Структура 
scFv-фрагмента антитела, состоящего из вариабельных доменов легкой (показан зеленым цветом) и тяжелой (показан оранжевым цветом) цепей. Черной 
линией отмечен линкерный пептид (G

4
S)

4
. Серыми кружками показана последовательность 6×His-tag на С-конце белка. Б. Структура кодирующих 

областей секретируемого (верхняя цепь) и цитозольного scFv. Принципиальным различием является наличие (или отсутствие) SP на N-конце. VL, VH — 
вариабельные домены легкой и тяжелой цепей соответственно, L — линкерный пептид, HIS — последовательность 6×His-tag. В. Структура экзогенной 
мРНК, используемой для трансляции внутриклеточных scFv: на 5ʹ-конце отмечен кэп (в работе использован m7GmAmG), далее сиреневым цветом 
обозначена 5ʹ-UTR регуляторная область, зеленым и оранжевым блоками — структура кодирующей области scFv, вторым сиреневым блоком — 3ʹ-UTR 
регуляторная область и протяженной серой линией с насечками — поли(А)-хвост. Г. Результат электрофоретического разделения полученных и очищенных 
препаратов экзогенных мРНК: 1 — мРНК, кодирующая тяжелую цепь иммуноглобулина к нерелевантному антигену (NC-RNA), расчетной длиной 1792 н.; 2 — 
мРНК, кодирующая scFv-FI6-SP, длиной 1219 н.; 3 — мРНК, кодирующая scFv-FI6-WO, длиной 1162 н.; 4 — мРНК, кодирующая scFv-2/3-SP, длиной 1201 н.; 
5 — мРНК, кодирующая scFv-2/3-WO, длиной 1138 н. L — маркер молекулярного веса РНК RiboRuler High Range RNA Ladder (Thermo Fisher Scientific, США). 
Длины маркера (н.) подписаны на дорожке
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построенной с использованием рекомбинантных препаратов 
scFv, очищенных нами ранее [13].

Согласно полученным нами результатам уже через 2 ч
после трансфекции клеток A549 мРНК, кодирующими 
scFv-SP, в КЖ выявлялись функциональные scFv-
фрагменты антител на аналитически детектируемом 
уровне. Далее в течение суток происходил равномерный 
прирост уровня scFv, и к 24 ч концентрация как scFv-FI6-SP, 
так и scFv-2/3-SP достигала примерно 200 нг/мл. 
Насыщение и выход на «плато» уровня белкового 
продукта, кодируемого экзогенной мРНК, происходили 
примерно через 24 ч после трансфекции, содержание 
белков в КЖ определялось на протяжении всего срока 
наблюдений (48 ч).

Для оценки внутриклеточной локализации белков, 
кодируемых scFv-SP и scFv-WO, была проведена 
иммунофлуоресцентная окраска клеток A549, 
трансфицированных соответствующими экзогенными 
мРНК (рис. 2Г). Иммуноцитохимический анализ показал, что 
scFv-FI6-WO и scFv-2/3-WO были диффузно распределены 
по цитоплазме клеток и не имели четкой локализации. 
Напротив, для scFv-FI6-SP и scFv-2/3-SP была характерна 

четкая локализация в перинуклеарной области, что с 
большой долей вероятности отражает их накопление 
преимущественно в ЭПР (который не окрашивали).

На заключительном этапе исследования мы оценили 
противовирусные свойства полученных экзогенных 
мРНК в отношении вирусов гриппа А и B. В качестве 
отрицательного контроля была использована мРНК, 
кодирующая тяжелую цепь иммуноглобулина к 
нерелевантному антигену (NC-RNA).

Эксперименты были проведены по лечебно-
профилактической схеме с контактом вирусов в течение 
1 ч. Согласно полученным нами результатам три мРНК, 
кодирующие scFv-FI6-SP, scFv-2/3-SP и scFv-2/3-WO, 
проявляли противовирусное действие в отношении ВГА 
(рис. 3А). При этом в случае штамма H1N1pdm наибольшим 
противовирусным эффектом обладала мРНК scFv-FI6-SP, 
предварительная трансфекция которой до заражения 
приводила к снижению вирусной нагрузки примерно в 
10 раз относительно контроля. В случае штамма H3N2 
подобной тенденции не наблюдалось: противовирусное 
действие всех трех мРНК было сопоставимо и приводило 
к снижению вирусной нагрузки до 60–70% относительно 

Рис. 2. Трансляционная активность экзогенных мРНК, кодирующих цитозольную (WO) и секретируемую (SP) формы scFv-фрагментов антител против 
вирусов гриппа А и В. А. Результаты вестерн-блоттинга scFv-2/3 фрагментов антител в культуральной жидкости (КЖ) и лизатах клеток MDCK с 
использованием антител к последовательности 6×His-tag (аналогичные результаты по scFv-FI6 не представлены). Дорожки 1, 2 — КЖ от клеток MDCK, 
трансфицированных мРНК, кодирующими scFv-2/3-SP и scFv-2/3-WO соответственно; дорожки 3, 4 — клеточные лизаты, полученные при трансфекции 
клеток мРНК, кодирующими scFv-2/3-SP и scFv-2/3-WO соответственно; М — белковый маркер молекулярного веса Precision Plus Protein Kaleidoscope 
Prestained Protein Standards (Bio-Rad; США), справа от дорожки подписаны соответствующие молекулярные массы в кДа. Все образцы были взяты через 24 ч 
после трансфекции клеток мРНК. Б. Результаты вестерн-блоттинга scFv-2/3 фрагментов антител в лизатах клеток MDCK в динамике с использованием 
антител к последовательности 6×His-tag. Верхняя панель — внутриклеточная продукция scFv-2/3-SP, нижняя — scFv-2/3-WO. Сверху в часах отмечено 
время отбора проб после трансфекции клеток мРНК. В. Кривые накопления scFv-фрагментов антител в КЖ после трансфекции клеток A549 мРНК, 
кодирующими scFv-FI6-SP (показаны красными точками) и scFv-2/3-SP (показаны синими точками). Результаты были получены методом ИФА. Точками 
показаны средние значения концентраций, рассчитанные для двух биологических повторов, ±СО. Г. Репрезентативные изображения, полученные в 
результате флуоресцентной микроскопии фиксированных препаратов клеток A549, трансфицированных экзогенными мРНК, кодирующими: 1 — scFv-FI6-
SP, 2 — scFv-FI6-WO, 3 — scFv-2/3-SP, 4 — scFv-2/3-WO и 5 — NC-RNA. Визуализацию актинового цитоскелета (показан желтым цветом) проводили родамин-
фаллоидином, клеточных ядер (показаны синим цветом) — хромосомным красителем DAPI. Для визуализации scFv-фрагментов (показаны зеленым цветом) 
использовали первичные мышиные моноклональные антитела к последовательности 6×His-tag с их последующим выявлением вторичными антителами Goat 
anti-Mouse, меченными флуоресцентным красителем Alexa Fluor 488. Изображения были получены с использованием системы визуализации клеток Cytell 
(40× увеличение), на этапе обработки (с использованием встроенного ПО) отдельные каналы изображения были псевдоокрашены в цвета RGB, на рисунке 
представлены увеличенные изображения
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контроля. Примечательно, что мРНК scFv-FI6-WO, 
специфично связывающая HA ВГА, не оказывала никакого 
эффекта на репродукцию ВГА.

В отношении ВГВ обе мРНК, кодирующие scFv-2/3 (как с 
SP, так и без него), проявляли противовирусное действие — 
их предварительная трансфекция до заражения приводила 
к снижению вирусной нагрузки до 50–70% относительно 
контроля. В целом, паттерны противовирусной активности 
мРНК в отношении штаммов ВГB Ямагатской и Викторианской 
линии были сопоставимы. Важно отметить, что изначально 
ни исходное полноразмерное моноклональное антитело 2/3 
[17], ни полученный на его основе белковый фрагмент scFv-
2/3 не обладали нейтрализующим действием в отношении 
ВГВ [13].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Современная пассивная иммунотерапия с использованием 
нейтрализующих моноклональных антител может 
обеспечить широкую защиту от инфекций, вызываемых 
вирусами гриппа [16, 18, 19]. Существующие на 

сегодняшний день терапевтические иммуноглобулины 
направлены к поверхностным антигенам вируса гриппа —
гемагглютинину и нейраминидазе. Вместе с тем, 
использование антител к белкам-мишеням, обладающим 
высокой скоростью изменчивости, несет в себе значительные 
риски [20, 21]. В связи с этим выбор в качестве мишеней 
других вирусных антигенов, обладающих большей 
консервативностью, представляется весьма перспективным.

Целью нашего исследования была оценка потенциала 
применения внутриклеточных терапевтических 
антител, нацеленных на две различных мишени вируса 
гриппа: поверхностный гемагглютинин, уязвимый 
для нейтрализующих антител, и внутренний белок 
нуклеопротеин, недоступный для блокирования в составе 
зрелого вириона. Попытки введения моноклональных 
антител в цитозоль живых клеток и исследования их 
функциональных свойств предпринимаются с 70-х годов 
прошлого столетия [22–24]. Однако лишь в последнее 
десятилетие, с развитием технологий на основе мРНК, 
позволяющих эффективно экспрессировать антитела 
непосредственно внутри клетки, появилась реальная 

Рис. 3. Противовирусная активность экзогенных мРНК, кодирующих цитозольную (WO) и секретируемую (SP) формы scFv-фрагментов антител 
против вирусов гриппа А и В. Результаты были получены методом внутриклеточного ИФА. А. Графики, отражающие внутриклеточный уровень ВГА при 
инфицировании штаммами вируса гриппа A/California/07/09 (H1N1pdm) (слева) и A/Cambodia/e0826360/2020 (H3N2) (справа). Б. Графики, отражающие 
внутриклеточный уровень ВГB при инфицировании штаммами вируса гриппа B/Phuket/3073/13 (Yamagata) (слева) и B/Malaysia/2506/2004 (Victoria) (справа). 
Цветными столбиками показаны средние значения по выборке (n = 4) ± CO: красными — при лечебно-профилактическом введении экзогенных мРНК, 
кодирующих scFv-фрагменты к HA ВГА; синими — при лечебно-профилактическом введении экзогенных мРНК, кодирующих scFv-фрагменты к NP 
ВГB; серым столбиком показаны средние значения для клеток, которым по лечебно-профилактической схеме вводили экзогенную мРНК, кодирующую 
тяжелую цепь иммуноглобулина к нерелевантному антигену (отрицательный контроль). Для расчета статистической достоверности выявленных различий 
использовали одношаговый анализ ANOVA с тестом Холма–Шидака для множественных сравнений. Звездочками отмечены достоверные различия, 
выявленные при сравнении соответствующей группы с NC-RNA: * — P
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возможность применения внутриклеточных антител в 
качестве терапевтического средства.

Известно, что полноразмерные иммуноглобулины наряду 
с антигенсвязывающей областью содержат Fc-домен, 
обладающий эффекторными функциями, обеспечивающими 
взаимодействие антитела c клетками иммунной системы 
[25, 26]. Очевидно, что для специфичного связывания 
антитела с мишенью внутри клетки такая функция является 
избыточной. Поэтому для оценки внутриклеточного действия 
нами был выбран формат scFv-фрагмента антитела [27, 28],
содержащий только его вариабельные домены. Кроме того, 
для каждого из антител (scFv-FI6, направленного против 
HA ВГА, и scFv-2/3, направленного против NP ВГВ) мы 
разработали два типа конструкций. Первая конструкция 
содержала последовательность SP, обеспечивающего 
транслокацию полипептидной цепи в просвет ЭПР, далее 
в аппарат Гольджи и секрецию белка во внеклеточное 
пространство. Вторая конструкция не содержала SP и 
каких-либо других сигнальных последовательностей, таких 
как сигнал ядерной локализации, сигнал локализации в 
ЭПР и др. [8, 9]. По нашим предположениям, белковый 
продукт, транслируемый с такой экзогенной мРНК, должен 
оставаться в цитозоле и эффективно взаимодействовать 
там с белками-мишенями, подавляя репродукцию вируса.

Нам удалось выявить различия в распределении 
полученных scFv-фрагментов антител внутри клетки. 
scFv-SP главным образом были сосредоточены в 
областях с сильно изогнутыми гладкими мембранами, 
типичными для пограничной области ЭПР/Гольджи. 
Напротив, scFv-WO не имели четкой локализации и были 
диффузно распределены по цитоплазме. Вероятно, после 
трансляции они оставались в цитозоле и не вовлекались в 
везикулярный транспорт.

Следует отметить, что при анализе клеточных лизатов 
методом вестерн-блоттинга через 24 ч после трансфекции 
мРНК, кодирующей scFv-WO, в отличие от scFv-SP, 
нам не удалось обнаружить белки, соответствующие 
мономерным scFv-фрагментам антител (~28 кДа). В то же 
время в КЖ после трансфекции как мРНК scFv-FI6-SP, так 
и scFv-2/3-SP мы достоверно выявили белки ожидаемой 
молекулярной массы.

Далее мы показали, что внутриклеточные scFv-
фрагменты антител обладают быстрым периодом 
полувыведения. Фактически продукты мРНК, кодирующей 
scFv-WO, обнаруживались лишь в течение 4 ч, что 
свидетельствует о быстрой деградации этих белков, 
по-видимому, посредством убиквитин-протеасомной 
системы. Многочисленные исследования показывают, 
что цитозольные scFv-фрагменты часто демонстрируют 
низкую стабильность, склонны к образованию димеров 
и деградации [29]. Это связано с неоптимальными для 
фолдинга антител условиями в цитозоле: низким pH, 
отсутствием шаперонов и восстановительной средой, 
которая препятствует формированию стабилизирующих 
дисульфидных связей [11, 12, 30]. Таким образом, 
эффективность применения внутриклеточных scFv-
фрагментов в цитозоле может быть существенно 
снижена из-за сложностей с фолдингом в неоптимальных 
условиях, что препятствует образованию стабильной 
функциональной конформации [31]. Интересно отметить, 
что внутриклеточная продукция scFv-фрагментов антител, 
содержащих сигнал секреции, инициировалась раньше и 
была более продолжительна.

Следующим этапом работы стала оценка противовирусной 
активности сконструированных и полученных нами 

экзогенных мРНК, кодирующих scFv-фрагменты антител, 
на клеточной модели гриппозной инфекции. Известно, что 
экзогенные мРНК способны неспецифически подавлять 
репродукцию вируса за счет собственной иммуногенности 
и активации клеточных сенсоров нуклеиновых кислот 
[32, 33]. В связи с этим в качестве негативного контроля 
неспецифических эффектов мы использовали мРНК, 
кодирующую тяжелую цепь иммуноглобулина против 
нерелевантного антигена (с SP), полученную и очищенную 
так же, как исследуемые препараты.

Нами было показано, что из двух конструкций, 
кодирующих цитозольный и секретируемый белок scFv-FI6
(специфично связывающий HA ВГА), противовирусным 
действием обладала только мРНК, кодирующая scFv-FI6-SP. 
Лечебно-профилактическое применение такой мРНК 
снижало вирусную нагрузку при заражении H1N1pdm 
почти в 10 раз по сравнению с препаратом сравнения. 
Противовирусный эффект scFv-FI6-WO нами выявлен 
не был. По-видимому, использование внутриклеточных 
антител более эффективно, когда их мишенью служат 
белки того же секреторного пути. Показано, что 
внутриклеточное человеческое антитело в формате 
scFv против HA, экспрессируемое с плазмидной ДНК, 
подавляло репродукцию вируса гриппа H5N1 in vitro. При 
этом in vivo его эффективность значительно возрастала в 
комбинации с внеклеточным IgG1, содержащим идентичные 
вариабельные домены [34].

Для scFv-2/3, направленного против NP ВГB и 
не обладающего нейтрализующими свойствами [13], 
результаты оценки противовирусной активности оказались 
неожиданными. Обе формы белка — как цитозольная, 
так и секретируемая — при лечебно-профилактическом 
применении проявляли противовирусные свойства, 
снижая вирусную нагрузку ВГВ в среднем в 2 раза по 
сравнению с контролем. Трансфекция экзогенных мРНК, 
кодирующих scFv-2/3, также приводила к подавлению 
репродукции ВГА. Поскольку исходное полноразмерное 
моноклональное антитело 2/3 не обладает 
нейтрализующей активностью [17], идентификация 
его эпитопа на молекуле NP ВГB затруднена. Можно 
предположить, что данный эпитоп высококонсервативен 
у вирусов гриппа А и B. Таким образом, экспрессия 
экзогенных мРНК, кодирующих scFv-2/3, приводила к 
снижению репродукции как ВГB, так и ВГА, в среднем на 
50% относительно контроля.

Следует отметить, что описано использование 
внутриклеточных антител против NP ВГА, подавляющих 
репродукцию вируса за счет блокирования взаимодействия 
NP с белками PB1 и PB2 вирусной полимеразы, которая 
играет критически важную роль в транскрипции и 
репликации вируса [35]. В другой работе описаны 
однодоменные антитела ламы против различных эпитопов 
NP ВГА, которые ингибировали репликацию вируса, 
блокируя ядерный импорт его рибонуклеопротеиновых 
комплексов, ответственных за ядерный транспорт, 
транскрипцию, репликацию и упаковку вирусного генома 
в новые вирионы [36]. Важно подчеркнуть, что в обоих 
исследованиях экспрессию внутриклеточных антител 
осуществляли не с помощью экзогенных мРНК, а путем 
трансфекции клеток плазмидными конструкциями, 
кодирующими эти антитела.

Наше исследование показало, что эффективность 
структурно различных внутриклеточных scFv-фрагментов 
антител зависит от пути внутриклеточного транспорта 
их вирусных белков-мишеней. Полученные нами данные 
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позволяют предположить, что ингибирование функций 
некоторых вирусных белков возможно только при 
воздействии на них в строго определенных клеточных 
компартментах.

Таким образом, использование экзогенных мРНК, 
кодирующих высокоаффинные scFv-фрагменты антител 
против консервативных внутриклеточных вирусных 
белков (в частности, нуклеопротеина вируса гриппа), 
представляет собой перспективную стратегию подавления 
репродукции вируса. Главное преимущество этого подхода —
нацеливание на внутренние вирусные белки, в том числе 
внутриклеточные комплексы репликации-транскрипции 
вируса, которые значительно более консервативны и в 
меньшей степени подвержены антигенному дрейфу, чем 
поверхностные гликопротеины [37].

ВЫВОДЫ

В представленной работе: 1) сконструированы scFv-
фрагменты антител к гемагглютинину вируса гриппа А 
и нуклеопротеину вируса гриппа В; 2) получены экзогенные 
мРНК, кодирующие эти scFv-фрагменты антител в двух 
формах — цитозольной и секретируемой; 3) подтверждена 
эффективная трансляция белковых продуктов scFv 
при трансфекции экзогенных мРНК в эукариотические 
клеточные системы; 4) показаны диффузное внутриклеточное 
распределение цитозольных форм и преимущественная 
локализация в эндоплазматическом ретикулуме 
секретируемых форм scFv-фрагментов антител; 5) показано 
противовирусное действие экзогенных мРНК, кодирующих 
scFv-фрагменты антител, в отношении вирусов гриппа А и В.
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