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ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ    ГЕНЕТИКА
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EXPRESSION OF MTCO1 IN CELL CULTURES FROM PATIENTS WITH LEIGH SYNDROME 
UNDER THE ACTION OF AAV9-SURF1

The most common biochemical defect in Leigh syndrome is aberrations in proteins involved in the assembly of the electron transport chain (ETC) complex IV subunits —

cytochrome C oxidase (COX). Among these, mutations in the SURF1 gene are the most common. The SURF1 protein is embedded in the inner mitochondrial 

membrane and plays a crucial role in the COX complex assembly. All mutations in the SURF1 gene result in the truncated protein biosynthesis and damage to the 

COX complex. Adeno-associated viral vectors (AAV9), which carry the not mutated SURF1 gene (AAV9-SURF1), are being investigated for the treatment of this 

disease. The aim of this study was to evaluate the expression levels of SURF1 and MTCO1 proteins in whole blood from patients with Leigh syndrome compared 

to reference values obtained for a pool of patients without mutations, as well as to evaluate the expression of the MTCO1 cytochrome c oxidase subunit in skin 

fibroblast cultures from patients with Leigh syndrome treated with AAV9. To investigate the gene therapy efficacy, AAV9-SURF1 was added to fibroblasts derived 

from the skin of a patient with a mutation in the Surf1 gene and to control skin fibroblasts at an optimal dose that did not impair cell viability in the MTT assay. We 

used Western blot analysis and quantitative PCR to evaluate changes in the relative amounts of the studied proteins after the addition of AAV9-SURF1 to control 

cells and cells obtained from the patient and identified significant compensatory changes in skin fibroblasts from a patient with a SURF1 mutation.
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ЭКСПРЕССИЯ MTCO1 В КУЛЬТУРАХ КЛЕТОК ПАЦИЕНТОВ С СИНДРОМОМ ЛИ 
ПРИ ДЕЙСТВИИ AAV9-SURF1

Самым частым биохимическим дефектом при синдроме Ли является нарушение белков, которые участвуют в сборке субъединиц IV комплекса электрон-

транспортной цепи — цитохром-с-оксидазы (COX). Среди них наиболее часто встречаются мутации гена SURF1. Белок SURF1 встроен во внутреннюю 

мембрану митохондрии и играет решающую роль в сборке СОХ-комплекса. Все мутации в гене SURF1 приводят к биосинтезу укороченного белка и 

повреждениям СОХ-комплекса. Для терапии данного заболевания исследуют возможность использования аденоассоциированных вирусных векторов 

(AAV9), в геном которых внесен немутированный SURF1 (AAV9-SURF1). Целью исследования было дать оценку уровня экспрессии белков SURF1, MTCO1 

в цельной крови пациентов с синдромом Ли на фоне полученных референсных значений для пула пациентов без мутаций, а также оценку экспрессии 

субъединицы цитохром-с-оксидазы MTCO1 в культурах фибробластов кожи пациентов с синдромом Ли при действии AAV9-SURF1. Для моделирования 

генотерапевтического воздействия к фибробластам, полученным из кожи пациента, и к контрольным фибробластам кожи был добавлен AAV9-SURF1 в 

подобранной оптимальной дозе, не приводящей к ухудшению жизнеспособности клеток в МТТ-тесте. Методами вестерн-блота и количественной ПЦР 

мы оценили изменения в относительном количестве исследуемых белков после добавления AAV9-SURF1 на контрольные клетки и клетки, полученные 

от пациента. Нами были выявлены существенные компенсаторные изменения для фибробластов кожи пациента с мутацией SURF1.
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К митохондриальным энцефаломиопатиям, манифестирующим 
в раннем возрасте с грубыми прогрессирующими 
неврологическими нарушениями, относится подострая 
некротизирующая энцефаломиелопатия, или синдром 
Ли (Leigh syndrome), описанная профессором Денисом 
Арчибальдом Ли в 1951 г. в результате посмертного 
исследования 7-месячного мальчика с прогрессирующими 
неврологическими симптомами [1].

Синдром Ли представляет собой редкую наследственную 
патологию — встречаемость составляет ориентировочно 
один случай на 34–36 тысяч новорожденных, которая в 
равной степени поражает как мальчиков, так и девочек, 
представляя собой с точки зрения этиологии генетически 
чрезвычайно гетерогенное заболевание — его причиной 
становятся дефекты множества генов, расположенных как 
на аутосомах и Х-хромосоме, так и в митохондриальной 
ДНК.

Известно, что самым частым биохимическим дефектом 
при этом синдроме являются нарушения аминокислотной 
последовательности белков, которые участвуют в 
сборке субъединиц IV комплекса электрон-транспортной 
цепи (ЭТЦ) внутренней мембраны митохондрий — 
цитохромоксидазы (cytochrome c oxidase, COX), 
катализирующей перенос электронов в ЭТЦ от цитохрома c 
к молекулярному кислороду с образованием воды и, таким 
образом, играющей ключевую роль в митохондриальном 
окислительном фосфорилировании.

Наиболее часто встречаются мутации в гене белка 
SURF1 (Sea Urchin Retroposon Family1), встроенного 
во внутреннюю мембрану митохондрии и играющего 
решающую роль в сборке СОХ-комплекса [2]. В норме 
предшественник SURF1 с молекулярным весом 35 КДа 
импортируется в митохондрии, где образуется его зрелая 
форма (30 КДа). При этом практически все мутации (более 60) 
в гене SURF1 приводят к биосинтезу белка, укороченного 
уже на стадии предшественника, и повреждениям СОХ-
комплекса, дестабилизированного дефектным SURF1. 
Около 50% мутаций в гене SURF1 составляют миссенс-, 
нонсенс-мутации и небольшие делеции, а наиболее 
частыми являются делеция 10 нуклеотидов со вставкой 
двух нуклеотидов (311-321del10insAT) в 4-м экзоне и делеция 
двух нуклеотидов (845delCT) в 9-м экзоне гена [3, 4].

Установлено, что хотя в большинстве случаев синдром 
Ли, связанный с SURF1, протекает типично, приводя к 
ранней смертности до 10 лет, примерно в 10% случаев 
наблюдается манифестация более мягких симптомов на 
фоне большей продолжительности жизни [5]. Во всех 
случаях дебют заболевания приходится на младенческий 
возраст и характеризуется нарушением питания, 
связанным с началом поражения центральной нервной 
системы, гипотонией и плохой координацией сосания 
и глотания, с последующим дальнейшим регрессом 
уже состоявшегося психомоторного развития [6]. Как 
считает ряд исследователей, гастропарез и замедленное 
опорожнение желудка, а также гастроэзофагеальный 
рефлюкс при синдроме Ли, обсуловленные мутациями 
в гене SURF1, скорее всего, также обусловлены нервно-
мышечной и митохондриальной дисфункцией, вызванной 
нарушениями работы ЭТЦ при дефиците цитохромоксидазы 
[7]. Типичными проявлениями развивающегося заболевания 
также являются такие нарушения, как нейропатия, атаксия, 
офтальмоплегия и гипертрихоз [8].

Для исследования молекулярных механизмов и 
возможности терапии синдрома Ли были созданы 
мышиные модели, дефицитные по гену SURF1(–/–). Модели

демонстрируют значительное снижение массы тела 
при рождении, которое выправляется к месяцу жизни, 
с манифестацией умеренной задержки моторного 
развития на фоне дефектной сборки и дефицита ряда 
критических субъединиц COX, включая митохондриально-
кодируемую MT-CO1 [9]. Несмотря на описанные 
нарушения, испытуемые мыши имеют продолжительность 
жизни, аналогичную дикому типу и было высказано 
предположение, что потеря такого фактора сборки COX, 
как Surf1, у мышей приводит к компенсаторным реакциям, 
включающим активацию митохондриального биогенеза и 
Nrf2-зависимого сигнального каскада, способствующим 
купированию проявлений патологического фенотипа 
[10]. Кроме того, для данной модели было показано, 
что терапия, проводимая с помощью аденовирусного 
вектора AAV серотипа 9 (AAV9) для лечения синдрома Ли, 
связанного с SURF1, при которой мышам вводили кодон-
оптимизированный ген человеческого SURF1 (hSURF1opt) 
(AAV9/hSURF1v1) приводит к восстановлению не только 
функции SURF1, но и активности комплекса IV, а также 
коррекции вызванного физической нагрузкой лактатного 
ацидоза без признаков токсичности для мышей дикого 
типа [11, 12].

В данной работе мы использовали сходный подход с 
целью изучения возможностей генотерапии синдрома 
Ли на модели подкожных фибробластов пациентов с 
мутацией в гене SURF1 при трансфекции аденовирусной 
конструкцией с кодон-оптимизированным геном 
человеческого SURF1. 

ПАЦИЕНТЫ И МЕТОДЫ

В исследование были включены три пациента с генетически 
подтвержденным диагнозом синдром Ли и типичными 
для заболевания клиническими проявлениями. Критерии 
включения в исследование: генетически подтвержденный 
диагноз синдрома Ли с часто встречающимися 
мутациями в гене SURF1 (табл. 1); возраст манифестации 
заболевания — до 3 лет; наличие информированного 
согласия законного представителя пациента. Критерии 
исключения: наличие другого генетически обусловленного 
заболевания, в том числе синдромальной формы 
патологии. Два пациента рождены доношенными, в 
удовлетворительном состоянии при рождении (оценка 
по Апгар 8/9 баллов), с нормальными к сроку гестации 
массой тела и длиной, один пациент рожден на сроке 
30 недель. У всех пациентов с первых месяцев жизни 
отмечалось отставание в психомоторном развитии. В 
динамике состояние пациентов прогрессивно ухудшалось, 
отмечалась утрата моторных и психоречевых навыков, 
у первых двух пациентов имели место метаболические 
кризы — ацетонемическое состояние в виде рвот, отказа 
от еды, слабости, вялости. Тяжелые бульбарные нарушения 
привели к необходимости установки гастростомы первому 
и второму пациентам, трахеостомы третьему пациенту и 
необходимости в респираторной поддержке у первого 
(НИВЛ). Всем пациентам диагноз установлен в возрасте 
старше 1,5 лет. По данным МРТ выявлены характерные 
для заболевания изменения вещества головного мозга: 
у первого пациента в возрасте 2 лет МР-признаки 
билатеральных симметричных структурных изменений 
черной субстанции, красных ядер, по ходу проводящих 
путей в продолговатом мозге и в средних ножках 
мозжечка, у второго пациента (1 год 4 месяца) отмечалось 
двустороннее симметричное повышение интенсивности 
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сигнала базальных ядер, кортико-спинальных трактов и 
стволовых структур, у третьего пациента  (1 год 2 месяца) 
имело место повышение интенсивности сигнала нижних 
отделов ствола головного мозга (мост, продолговатый мозг) 
без вовлечения базальных ганглиев. Диагноз подтвержден 
молекулярно-генетическими методами исследования (табл. 1). 

На момент исследования в неврологическом статусе 
у всех пациентов отмечалось нарушение координации 
и фиксации взора, ротаторный нистагм с вертикальным 
компонентом, плавающие движения глазных яблок, 
бульбарно-псевдобульбарный синдром, диффузная 
общая туловищная и конечностная гипотония/атония на 
фоне смешанного тетрапареза, снижение сухожильно-
периостальных рефлексов, полинейропатический синдром 
с дистальной гипотрофией мышц конечностей, миогенные 
контрактуры в крупных суставах. 

Группа контроля была набрана среди здоровых детей 
(3–13 лет) с невыявленными мутациями в гене SURF1 и с 
отсутствием какой-либо симптоматики, обращавшихся в 
детское поликлиническое отделение НЦАГиП им. В. И. Кулакова 
в рамках планового обследования педиатром.

Получение образцов крови

Цельную кровь, обработанную ЭДТА, в течение 15–60 мин 
после внутривенного забора у пациентов обрабатывали 
лизирующим буфером на основе хлорида аммония и калия 
(AbiLyse ACK Lysing Buffer, США) по методике, описанной 
производителем с целью последующего получения проб 
для вестерн-блот-анализа.

Культивирование фибробластов 

Первичные клеточные культуры подкожных фибробластов 
были любезно предоставлены из коллекции РНИМУ 
им. Пирогова и с третьего пассажа клетки культивировали 
на полной питательной среде следующего состава: 
DMEM («ПанЭко», Россия): F12 («ПанЭко», Россия), в 
соотношении 1 : 1, c добавлением 100 ЕД/мл пенициллина, 
100 мкг/мл стрептомицина (PenStrep, GIBCO, США) и 

10% фетальной бычьей сыворотки (FBS, GIBCO, США)  
при 37 °С в атмосфере 5% CO

2
. По достижении 60% 

конфлюэнтности, клетки пересевали в соотношении 1/3 
с помощью 0,05% трипсина /ЭДТА («ПанЭко», Россия) на 
культуральные флаконы. Активность трипсина подавляли 
добавлением соответствующего количества свежей 
питательной среды. На каждом пассаже количество клеток 
определяли с помощью камеры Горяева («МИНИМЕД», 
Россия). Морфологию клеток оценивали с помощью 
светового инвертированного микроскопа NIKON ECLIPSE 
TS100 (JAPAN).

Получение генетической конструкции в ААV-векторе, 
несущей ген SURF1  

Для выделения тотальной РНК использовали коммерческий 
набор RNA-solo («Евроген», Россия) в соответствии 
с протоколом производителя. Образцы ткани 
гомогенизировали и лизировали реагентом ExtractRNA 
(«Евроген», Россия) с последующей экстракцией и очисткой 
РНК. Концентрацию и чистоту полученной РНК оценивали 
спектрофотометрически, проверку целостности РНК и 
отсутствия деградации проводили методом электрофореза 
в 2%-м агарозном геле. Визуализацию результатов 
осуществляли с использованием гель-документирующей 
системы GenoSens 2250 Touch (Clinx). Синтез первой 
цепи кДНК проводили на матрице выделенной РНК с 
использованием набора реагентов на основе обратной 
транскриптазы Magnus («Евроген», Россия).

Для амплификации полной кодирующей 
последовательности гена SURF1 были разработаны 
специфические праймеры, содержащие на 5ˈ-концах 
дополнительные нуклеотидные последовательности, 
комплементарные концевым участкам линеаризованной 
плазмиды pAAV-CAG, для последующей сборки методом 
TLTC. Праймеры имели следующую структуру. Прямой 
праймер SURF1-dir: 5ˈ-tgtccaggcggccgccATGGCGGCG
GTGGCT-3ˈ и обратный праймер SURF1-rev: 5ˈ-aggcacagt
cgaggcagatctTCACACACCAGGTGTCCCAC-3ˈ (строчные 
буквы — гомологичные вектору последовательности, а 

Таблица 1. Клинико-анамнестические данные пациентов, включенных в исследование

Пол
Пациент 1 Пациент 2 Пациент 3

Девочка Девочка Мальчик

Вариант в гене SURF1

Делеции в гетерозиготном 
состоянии: с.845 84delCT; 

p.(Ser282Cysfs*9) 
c.901 902delTC; 

p.(Ter301Thrext27)

Варианты в 
компаунд-гетерозиготном 

состоянии: 
с.845_846delCT 

c.752-2A>G

Варианты в 
компаунд-гетерозиготном 

состоянии: 
c.240G>C(p.Q8OH) 
c.870dupT(p.K29I)

Возраст манифестации
1 месяц 

задержка психомоторного 
развития

1 год 
метаболический криз

2 года 
тремор рук, нарушение 

походки, моторная 
неловкость

Возраст на момент диагностики заболевания 2,5 года 1,5 года 2,5 года

Возраст на момент исследования 6 лет 5,5 лет 12 лет

Клинические проявления 
на момент исследования

Задержка психомоторного 
развития

+ + +

Бульбарные нарушения + гастростома + гастростома + трахеостома

Полинейропатический 
синдром

+ + +

Метаболические кризы + + +

Респираторная терапия НИВЛ 10 ч в сутки – –

Палиативный статус + + +
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прописные — участки, комплементарные началу и концу 
открытой рамки считывания гена SURF1). Температура 
отжига праймеров и специфичность были рассчитаны с 
помощью программы Primer3. Амплификацию гена SURF1 
проводили методом полимеразной цепной реакции (ПЦР). 
Протокол амплификации включал начальную денатурацию 
при 95 °C 5 мин, 30 циклов (денатурация при 95 °C — 
30 с, отжиг при 62 °C — 30 с, элонгация при 72 °C — 1 мин) 
и финальную элонгацию при 72 °C 5 мин. Продукты ПЦР 
анализировали электрофоретически в 1%-м агарозном геле.

Плазмидный вектор pAAV-CAG подготавливали 
для клонирования с помощью ПЦР-амплификации с 
праймерами Vec-dir (AGATCTGCCTCGACTGTGCCT) и 
Vec-rev (GGCGGCCGCCTGGACA) и полимеразой Kapa 
(Rosche), что обеспечивало получение линейной молекулы 
с концевыми последовательностями, гомологичными 
амплифицированному гену SURF1. Сборку рекомбинантной 
плазмиды осуществляли методом T5 экзонуклеазно-
зависимой сборки, смешивая очищенный ПЦР-продукт 
гена SURF1 и линеаризованный вектор с добавлением 
T5 экзонуклеазы и инкубируя смесь на льду 5 мин. 
Два микролитра реакционной смеси использовали для 
трансформации химически компетентных клеток E. coli 
штамма XL-Blue («Евроген», Россия) по стандартной 
методике [13].

Плазмидную ДНК выделяли из культур мини-
препаративным методом с набором Plasmid Miniprep 2.0 
(«Евроген», Россия). Первичный скрининг положительных 
клонов проводили с помощью ПЦР со специфичными 
для SURF1 праймерами. Корректность полученной 
рекомбинантной конструкции дополнительно подтверждали 
рестрикционным анализом эндонуклеазой PstI в буфере 
Orange («Сибэнзим», Россия) с последующим анализом 
профиля рестрикции методом электрофореза в агарозном 
геле.

Оценка цитотоксического действия вируса

Цитотоксическое действие вируса оценивали с помощью 
МТТ-теста жизнеспособности клеток кожи пациентов без 
мутации Surf1. Клеточную культуру четвертого пассажа 
высевали в 96-луночные прозрачные плоскодонные 
планшеты (Greiner Bio-One, Aвстрия) в концентрации 
1 × 105 кл./лунка. Через 24 ч культивирования при 37 °С и 
5% СО

2
 клетки обрабатывали различными концентрациями 

вируса — 1013, 1012, 1010, 108 вирусных частиц на 1 мл 
культуральной среды. В контрольные лунки вместо вирусных 
частиц вносили среду культивирования в адекватных 
количествах. После добавления вирусных частиц клетки 
инкубировали 24 ч при вышеописанных условиях и по 
окончании инкубации в каждую лунку микропланшета 
добавляли по 20 мкл раствора, содержащего 
4,5-диметилтиазол-2-ил-2,5-дифенилтетразолийбромид 
(МТТ, Santa Cruz) в концентрации 5 мг/мл. Через 4 ч 

среду с реагентом МТТ удаляли и для солюбилизации 
кристаллов формазана в лунки вносили по 100 мкл 
диметилсульфоксида (ДМСО). Оптическую плотность 
измеряли с помощью микропланшетного ридера ELISA при 
570 нм. Анализ проводили трижды для расчета среднего 
значения полумаксимальной ингибирующей концентрации 
(IC

50
) и стандартного отклонения.

Электрофорез и вестерн-блот-анализ содержания 
целевых белков в лизатах клеток цельной крови 
и фибробластов

Для анализа относительного содержания исследуемых 
белков в лизатах клеток цельной крови и фибробластов кожи 
с/без заражения вирусной конструкцией образцы разделяли 
методом SDS-электрофореза в полиакриламидном геле с 
последующим электропереносом на нитроцеллюлозную 
мембрану (Bio-Rad) [15]. Мембраны инкубировали со 
специфичными первичными антителами (anti-Surf1 (Abcam; 
ab110256, 1: 1000), anti-MTCO1 (Abcam; ab14705, 1 : 1000) 
с последующей инкубацией со вторичными антивидовыми 
HRP-связанными антителами. Сигналы анализировали 
с помощью реакции усиленной хемилюминесценции с 
использованием набора Novex™ ECL Chemiluminescent 
Substrate Reagent Kit (INVITROGEN, США) в соответствии 
с инструкциями производителя. Нормализовали сигнал 
от белков интереса на содержание общего белка, 
определенное по интенсивности окрашивания при помощи 
красителя Понсо (0,5% в 1%-й уксусной кислоте).

Оценка уровня экспрессии целевых генов в лизатах 
фибробластов после трансфекции 

Экспрессию генов оценивали методом обратной 
транскрипции (ОТ) в реальном времени с использованием 
ПЦР с применением специфических для транскриптов 
праймеров (табл. 1). Выделение и анализ чистоты РНК 
проводили, как описано выше. Для проведения ОТ к 0,5 мкг
тотальной РНК добавляли 2 мкл 20 мкМ случайного 
гексапраймера и инкубировали 2 мин при 70 °С. Затем 
пробирку переносили в лед, добавляли 4 мкл 5× ОТ-буфера, 
2 мкл 10 мМ смеси dNTP, 2 мкл 20 мМ DTT, 1 мкл обратной 
транскриптазы MMLV (50 ед/мкл) («Евроген», Россия). 
Смесь инкубировали 40 мин при 40 °C и останавливали 
реакцию прогреванием в течение 10 мин при 70 °C. 
Последующую ПЦР в реальном времени проводили 
по схеме: 50 нг кДНК матрицы, по 0,4 мкл прямого и 
обратного праймера (100 пмоль), 2 мкл 5хqPCRmixHS 
SYBR. Контроль амплификации проводили с помощью 
электрофореза в 3%-м агарозном геле. Статистическую 
обработку данных осуществляли с помощью программы 
QGENE (2-ΔCt метод). Нормировку экспрессии каждого 
целевого гена проводили на ген глицеральдегид-3-
фосфатдегидрогеназы (GAPDH). В ходе работы были 

Таблица 2. Характеристика праймеров

Ген
Направление 

праймера
Последовательность праймера 

с 5’->3’
Длина праймера, п.н. Длина продукта, п.н.

Температура отжига, 
°С

GAPDH
Прямой GGATTTGGTCGTATTGGG 18 205 55,5

Обратный GGAAGATGGTGATGGGATT 19

SURF1
Прямой GCGGCCTCATCTCCT 15 281 58,6

Обратный CTCTGCGCCTGTGATTC 17

MTCO1
Прямой CCTACTCCTGCTCGCATCTG 20 363 59,4

Обратный AGAATGGGGTCTCCTCCTCC 20
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подобраны праймеры, специфичные к транскриптам 
соответствующих генов (табл. 2).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Относительное содержание белков SURF1 и MTCO1 в 
клетках венозной крови 20 пациентов детского возраста 
(3–11 лет) без митохондриальных патологий (группа 
«контроль») было определено при помощи вестерн-блот-
анализа, данные для референсных значений представлены 
на рис. 1. Показано, что относительное содержание 
исследуемых белков снижено у пациентов с мутациями в 
гене SURF1 по сравнению с контрольной группой. 

Для определения безопасности генотерапевтического 
воздействия по результатам исследования зависимости 
жизнеспособности клеток от количества внесенных 
вирусных частиц было рассчитано, что доза в 104 на клетку 
является оптимальной (рис. 2). Далее к фибробластам, 
полученным из кожи пациента с мутацией в гене 
SURF1, и к контрольным фибробластам был добавлен 
аденовирусный конструкт c нормальным аналогом гена 
SURF1 в подобранной оптимальной дозе, не приводящей к 
ухудшению жизнеспособности клеток в МТТ-тесте.

Экспрессию генов SURF1 и MTCO1 в лизатах 
фибробластов после заражения клеток AAV9-SURF1 
оценивали при помощи количественной ПЦР. Во-первых, 
нами было выявлено, что в фибробластах, полученных 
от пациентов без мутаций в гене SURF1 значительно 
выше уровень экспрессии этого гена по сравнению с 
фибробластами больных с синдромом Ли и мутациями в 
гене SURF1 (рис. 3, левая панель). При этом оказалось, 
что уровень экспрессии гена MTCO1 достоверно не 
отличается от такового для фибробластов больных и 
участников контрольной группы (рис. 3, правая панель). 
Во-вторых, уровень экспрессии гена SURF1 достоверно 
растет в фибробластах от пациентов с мутациями и 
достоверно не отличается от уровня экспрессии этого 
гена под действием генотерапевтического конструкта в 
контрольных фибробластах. Аналогичную картину мы 
наблюдали для гена MTCO1 — достоверный рост под 
действием трансфекции в больных фибробластах по 
сравнению с уровнем до трансфекции. Любопытно, что 
уровень экспрессии гена MTCO1 после трансфекции 
кратно выше исходного как для больных, так и для 
здоровых клеток (рис. 3). 

При анализе содержания целевых белков после 
воздействия генотерапевтического конструкта нами были 

выявлены существенные различия между контрольными 
клетками и подкожными фибробластами пациента 
с мутацией SURF1. Методом вестерн-блот-анализа 
мы оценили изменения в относительном количестве 
исследуемых белков и показали, что через 24 ч после 
внесения вируса в культуральную среду как для 
клеток дикого типа, так и для мутантов по гену SURF1 
наблюдается достоверное увеличение уровня белка 
(p < 0,05), но для фибробластов от пациентов с мутацией 
это увеличение более выражено (рис. 4, левая панель). 
Показано также, что исходный уровень белка SURF1 в 
клетках дикого типа значительно выше, чем в мутантных 
клетках. Что касается белка MTCO1, исходно значительно 
более представленного в клетках дикого типа, увеличения 
его экспресии под действием вируса не наблюдается в 
контрольных фибробластах, в то время как для клеток 
пациентов с мутацией SURF1 уровень MTCO1 достоверно 
возрастал через 24 ч после добавления вируса к клеткам 
(рис. 4, правая панель) и даже превышает уровень белка в 
клетках дикого типа (p < 0,05).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В рамках общепринятой концепции о том, что белок 
SURF1 играет критическую роль в сборке голофермента 
цитохромоксидазы (ЦО), с механистической точки зрения, 
можно предположить, что потеря белка SURF1 влияет 
на активность ЦО посредством стабилизации структуры 
мультибелкового комплекса в митохондриальной 

Рис. 1. Относительное содержание белков в клетках цельной крови, полученное для выборки (n = 20, черные кружки) здоровых пациентов (3–11 лет) и 
пациентов с мутацией в гене SURF1 (цветные символы), представлено как среднее арифметическое с 95% процентилями в отклонениях

Рис. 2. Цитотоксическое действие вируса на контрольные фибробласты. 
Анализ проводили трижды для расчета среднего значения полумаксимальной 
ингибирующей концентрации (IC

50
) и стандартного отклонения
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мембране [15]. При манифестации синдрома Ли у 
пациентов с мутациями в гене SURF1 обычно сохраняется 
не более 20% активности ЦО, в то время как для модельных 
животных с нокаутом по этому гену остается не менее 50% 
активности фермента, что и приводит к такой значительной 
(до 30%) разнице между фенотипами пациентов с 
синдромом Ли и мышами с дефицитом белка SURF1 [12]. 
Однако, хотя использование таких моделей не кажется 
перспективным ввиду наблюдающихся фенотипических 
различий, применение генотерапии при помощи вектора 
на базе AAV9-SURF1 все же привело к значительному 
росту активности цитохромоксидазы в головном мозге, 
мышцах и печени SURF1-дефицитных мышей [12], что 
дает основания предполагать возможность увеличения 
активности этого фермента и улучшения состояния у 
пациентов с синдромом Ли, обусловленным аналогичными 
мутациями в гене SURF1. 

В нашей модели, где сравнивали эффект трансфекции 
при помощи AAV9-SURF1 фибробластов пациентов с 
клинически выставленным синдромом Ли и фибробластов 
здоровых детей, мы ставили задачу определить уровень 
экспрессии не только белка SURF1, но и MT-CO1, 
который обычно используют в качестве маркера уровня 
содержания и нативной структуры всей цитохромоксидазы. 
В нашей работе мы наблюдали синхронный подъем 
уровня экспрессии как генов, так и белков Surf1 и MT-CO1
в фибробластах больных. Ранее наблюдавшиеся 
исследователями тенденции улучшения состояния 
модельных животных при аналогичных изменениях в ответ 
на генотерапию позволяют предположить возможность 
увеличения активности цитохромоксидазы в клеточных 
моделях. Измерение активности этого фермента в ответ 
на трансфекцию клеток первичных культур пациентов 
с синдромом Ли представляется важным этапом 

Рис. 3. Экспрессия генов SURF1 и MTCO1 в лизатах подкожных фибробластов пациентов без мутации SURF1 (д. т. — дикий тип на графиках) и с мутацией 
в гене SURF1 (SURF1 мут.) через 24 ч после заражения AAV9-SURF1. * — р < 0,05 (Манн–Уитни).

Рис. 4. Относительное содержание белков SURF1 и MTCO1 в лизатах подкожных фибробластов пациентов без мутации SURF1 (д. т. — дикий тип на 
графиках) и с мутацией в гене SURF1 (SURF1 мут.) через 24 ч после заражения AAV9-SURF1 (верхняя панель). * — р < 0,05 (Манн–Уитни). На нижней панели 
представлены репрезентативные электрофореграммы, иллюстрирующие изменения содержания целевых белков при действии вирусной конструкции
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доклинических исследований предлагаемого препарата 
на базе аденовирусной конструкции. Предложенный 
подход исследования эффективности генотерапии на 
клетках пациентов лишен недостатков мышиной модели, 
где для выявления эффекта, по мнению исследователей, 
необходимо создание более тяжелого фенотипа ввиду 
отсутствия поведенческих дефектов и нейромоторных 
нарушений. Ранее было показано, что у имеющихся 
модельных животных манифестация заболевания в 
легкой форме обусловлена активацией компенсаторных 
механизмов у выживших особей при естественной 
селекции, в отличие от человека, где врачебная помощь 

приводит к выживанию даже при манифестации тяжелой 
формы заболевания [10].

ВЫВОДЫ

Полученная конструкция AAV9-hSURF1 позволяет 
осуществить безопасную трансфекцию в дозе, уже 
через 24 ч приводящую к возможности регистрации 
достоверного кратного увеличения экспрессии как генов, 
так и белков SURF1 и MTCO1 в клетках пациентов с 
синдромом Ли с исходно низким содержанием этих белков 
по сравнению с клетками здоровых людей.
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