Авторские права: © 2017 принадлежат авторам. Лицензиат: РНИМУ им. Н.И. Пирогова.
Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Разработка нейроустройства с биологической обратной связью для восполнения утраченных двигательных функций

Е. А. Богданов1 , В. А. Петров1 , С. А. Ботман1 , В. В. Сапунов1 , В. А. Ступин2 , Е. В. Силина3 , Т. Г. Синельникова3 , М. В. Патрушев1 , Н. Н. Шушарина1
Информация об авторах

1 Химико-биологический институт,
Балтийский федеральный университет имени Иммануила Канта, Калининград

2 Кафедра госпитальной хирургии № 1, лечебный факультет,
Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва

3 Кафедра патологии человека, Институт профессионального образования,
Первый Московский государственный медицинский университет имени И. М. Сеченова, Москва

Для корреспонденции: Богданов Евгений Анатольевич
ул. А. Невского, д. 14, г. Калининград, 236041; moc.liamg@vonadgobue

Информация о статье

Финансирование: работа выполнена при поддержке Министерства образования и науки Российской Федерации (Соглашение о предоставлении субсидии от 27.10.2015 № RFMEFI57815X0140).

Благодарности: авторы благодарят Александра Романова из Центра реабилитации Управления делами Президента РФ (Москва), Рафаэля Оганова из Государственного научно-исследовательского центра профилактической медицины (Москва), Даниила Борчевкина, Алексей Белоусова, Владимира Савинова, Сергея Соколова и Алексея Медведева за плодотворное научное сотрудничество и вклад в работу

Статья получена: 31.03.2016 Статья принята к печати: 07.04.2016 Опубликовано online: 05.01.2017
|

Одновременное использование электрофизиологических сигналов нескольких типов (данных электроэнцефалограммы (ЭЭГ), электромиограммы (ЭМГ), электроокулограммы (ЭОГ) и др.) обеспечивает более высокую эффективность систем управления внешними устройствами — нейропротезами, экзоскелетами, роботизированными инвалидными креслами и телеуправляемыми роботами. В статье представлены результаты первых испытаний многофункционального нейроустройства, способного распознавать одновременно ЭЭГ-, ЭМГ- и ЭОГ-сигналы (последние — с подключением модулей фотоплетизмограммы, SpO2 и температуры). Результаты измерений сигналов с помощью разработки сравнивали с данными прибора KARDi3 («Медицинские компьютерные системы», Россия) и мультиметра Fluke 17b с подключаемым термистором (Fluke Corporation, США). По информативности и точности данные были сопоставимы. Также исследовали эффективность гибридизации ЭЭГ- и ЭМГ-сигналов с помощью нейроустройства: она позволила увеличить точность классификации у всех испытуемых в среднем на 12,5 % — до среднего значения 86,8 % (от 75 до 97 %).

Ключевые слова: интерфейс мозг–компьютер, электроэнцефалограмма, экзоскелет, нейроустройство, электромиограмма, электроокулограмма, биологическая обратная связь

КОММЕНТАРИИ (0)