МНЕНИЕ

Магнитно-резонансная томография для персонализированной оценки и прогнозирования эффективности доставки наноформуляций противоопухолевых препаратов

Информация об авторах

1 Лаборатория биомедицинских наноматериалов, Национальный исследовательский технологический университет «МИСиС», Москва

2 Научно-исследовательская лаборатория тканеспецифических лигандов, Химический факультет, Московский государственный университет имени М. В. Ломоносова, Москва

3 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия

4 Физический институт имени П. Н. Лебедева Российской академии наук, Москва

5 Российский химико-технологический университет имени Д. И. Менделеева, Москва

Для корреспонденции: Виктор Алексеевич Науменко
Ленинский пр-т, д. 4, г. Москва, 119049 moc.liamg@tciv.oknemuan

Информация о статье

Финансирование: работа выполнена при финансовой поддержке министерства образования и науки РФ в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 годы», соглашение от 27.09.2017 г. № 14.575.21.0147 (уникальный идентификатор соглашения RFMEFI57517X0147).

Статья получена: 30.08.2018 Статья принята к печати: 25.09.2018 Опубликовано online: 31.12.2018
|
  1. Shi J et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. NIH Public Access, 2017; 17 (1): 20–37.
  2. Prabhakar U et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013; 73 (8): 2412–17.
  3. Davis ME et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010; 464 (7291): 1067–70.
  4. Hrkach J et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012; 4 (128): 128ra39.
  5. Miller MA et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci Transl Med. 2015; 7 (314): 314ra183.
  6. Ramanathan RK et al. Correlation between Ferumoxytol Uptake in Tumor Lesions by MRI and Response to Nanoliposomal Irinotecan in Patients with Advanced Solid Tumors: A Pilot Study. Clin Cancer Res. 2017; 23 (14): 3638–48.
  7. Wilhelm S et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016; 1 (5): 16014.
  8. Karathanasis E et al. Imaging nanoprobe for prediction of outcome of nanoparticle chemotherapy by using mammography. Radiology. 2009; 250 (2): 398–406.
  9. Lee H et al. 64Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer. Clin Cancer Res. 2017; 23 (15): 4190–02.
  10. Head HW et al. Combination radiofrequency ablation and intravenous radiolabeled liposomal Doxorubicin: imaging and quantification of increased drug delivery to tumors. Radiology. 2010; 255 (2): 405–14.
  11. Arrieta O et al. A phase II trial of prolonged, continuous infusion of low-dose gemcitabine plus cisplatin in patients with advanced malignant pleural mesothelioma. Cancer Chemother Pharmacol. 2014; 73 (5): 975–82.
  12. Yokoi K et al. Capillary-Wall Collagen as a Biophysical Marker of Nanotherapeutic Permeability into the Tumor Microenvironment. Cancer Res. 2014; 74 (16): 4239–46.
  13. Yokoi K et al. Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments. Cancer Lett. 2014; 345 (1): 48–55.
  14. Sessa C et al. Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? Nat Clin Pract Oncol. 2008; 5 (7): 378–91.
  15. Sherwood LM, Parris EE, Folkman J. Tumor Angiogenesis: Therapeutic Implications. N Engl J Med. 1971; 285 (21): 1182–6.