Авторские права: © 2019 принадлежат авторам. Лицензиат: РНИМУ им. Н.И. Пирогова.
Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Определение эмоционального состояния свёрточной нейронной сетью по данным электроэнцефалографии

Информация об авторах

Балтийский федеральный университет имени Иммануила Канта, Калининград, Россия

Информация о статье

Вклад авторов в работу: В. Б. Савинов, С. А. Ботман, В. В. Сапунов и В. А. Петров — сбор и обработка материала, написание текста статьи; И. Г. Самусев — написание, редактирование текста статьи; Н. Н. Шушарина — руководство и редактирование статьи.

Статья получена: 21.03.2019 Статья принята к печати: 16.05.2019 Опубликовано online: 29.05.2019
|
  1. Calvo RA, D'Mello S. Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Transactions on affective computing. 2010; 1 (1): 18–37.
  2. Jerritta S, Murugappan M, Nagarajan R, Wan K. Physiological signals based human emotion recognition: a review. Signal Processing and its Applications (CSPA), 2011 IEEE 7th International Colloquium on. IEEE. 2011; р. 410–5.
  3. Li Q, Yang Z, Liu S, Dai Z, Liu Y. The study of emotion recognition from physiological signals. Advanced Computational Intelligence (ICACI). 2015 Seventh International Conference on. IEEE. 2015; p. 378–82.
  4. Soroush MZ, Maghooli K, Setarehdan SK, Nasrabadi AM. Emotion classification through nonlinear EEG analysis using machine learning methods. International Clinical Neuroscience Journal. 2018; 5 (4): 135–49.
  5. Liu J, Meng H, Nandi A, Li M. Emotion detection from EEG recordings. The 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC– FSKD). IEEE. 2016; p. 1722–7.
  6. Ackermann P, Kohlschein C, Bitsch JA, Wehrle K, Jeschke S. EEG-based automatic emotion recognition: Feature extraction, selection and classification methods. 2016 IEEE 18th international conference on e-health networking, applications and services (Healthcom). IEEE. 2016; p. 1–6.
  7. Mehmood RM, Du R, Lee HJ. Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors. IEEE Access. 2017; (5): 14797–806.
  8. Yin Z, Zhao M, Wang Y, Yang J, Zhang J. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Computer methods and programs in biomedicine. 2017; (140): 93–110.
  9. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Briefings in bioinformatics. 2017; 18 (5): 851–69.
  10. Page A, Shea C, Mohsenin T. Wearable seizure detection using convolutional neural networks with transfer learning. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2016; p. 1086–9.
  11. Cecotti H, Graser A. Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE transactions on pattern analysis and machine intelligence. 2011; 33 (3): 433–45.
  12. Gao Y, Lee HJ, Mehmood RM. Deep learninig of EEG signals for emotion recognition. 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE. 2015; p. 1–5.
  13. Tripathi S, Acharya S, Sharma RD, Mittal S, Bhattacharya S. Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset. Twenty-Ninth IAAI Conference. 2017.
  14. Koelstra S, Muhl C, Soleymani M, Lee JS, Yazdani A, Ebrahimi T et al. Deap: A database for emotion analysis; using physiological signals. IEEE transactions on affective computing. 2012; 3 (1): 18–31.
  15. Li J, Zhang Z, He H. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cognitive Computation. 2018; 10 (2): 368–80.
  16. Kwon YH, Shin SB, Kim SD. Electroencephalography based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system. Sensors. 2018; 18 (5): 1383.
  17. Yuan L, Cao J. Patients’ eeg data analysis via spectrogram image with a convolution neural network. International Conference on Intelligent Decision Technologies. Cham: Springer, 2017; p. 13–21.
  18. Picard RW, Vyzas E, Healey J. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE transactions on pattern analysis and machine intelligence. 2001; 23 (10): 1175–91.
  19. Shusharina NN, Borchevkin DA, Sapunov VV, Petrov VA, Patrushev MV. A Wireless Portable Platform for Physiological Potentials Registration and Processing: A Unified Approach. Journal of Pharmaceutical Sciences and Research. 2017; 9 (7): 1178.
  20. Jenke R, Peer A, Buss M. Feature extraction and selection for emotion recognition from EEG. IEEE Transactions on Affective Computing. 2014; 5 (3): 327–39.
  21. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980. [Preprint]. 2014 [cited 2014 Dec 22]. Available from: https://arxiv.org/abs/1412.6980.