ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Изоформы микроРНК miR-148a и miR-203a предположительно играют роль супрессоров колоректального рака

Информация об авторах

1 Национальный исследовательский университет «Высшая школа экономики», Москва, Россия

2 Институт молекулярной биологии Национальной академии наук Республики Армения, Ереван, Армения

Для корреспонденции: Степан Ашотович Нерсисян
ул. Вавилова, д. 7, г. Москва, 117312, Россия; ur.esh@naysisrens

Информация о статье

Финансирование: исследование осуществлено в рамках Программы фундаментальных исследований НИУ ВШЭ.

Благодарности: Алексею Галатенко из лаборатории молекулярной физиологии НИУ ВШЭ за критику авторских идей и ценные замечания.

Соблюдение этических стандартов: исследование проведено с соблюдением этических принципов Хельсинкской декларации Всемирной медицинской ассоциации.

Статья получена: 29.04.2022 Статья принята к печати: 22.05.2022 Опубликовано online: 30.05.2022
|
  1. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120 (1): 15–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15652477.
  2. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015; 4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26267216.
  3. Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev Med. 2009; 60 (1): 167–79. Available from: http://www.ncbi.nlm. nih.gov/pubmed/19630570.
  4. Nersisyan S, Shkurnikov M, Poloznikov A, Turchinovich A, Burwinkel B, Anisimov N, et al. Post-Processing Algorithm for miRNA Microarray Data. Int J Mol Sci. 2020; 21 (4). Available from: http://www.ncbi.nlm.nih.gov/pubmed/32059403.
  5. Turchinovich A, Tonevitsky AG, Cho WC, Burwinkel B. Check and mate to exosomal extracellular miRNA: new lesson from a new approach. Front Mol Biosci. 2015; 2 (APR): 11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25988178.
  6. Zhiyanov A, Nersisyan S, Tonevitsky A. Hairpin sequence and structure is associated with features of isomiR biogenesis. RNA Biol. 2021; 18 (sup1): 430–8. Available from: http://www.ncbi. nlm.nih.gov/pubmed/34286662.
  7. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71 (3): 209–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33538338.
  8. Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J cancer. 2013; 132 (4): 745–54. Available from: http://www.ncbi.nlm.nih. gov/pubmed/22753312.
  9. Chen B, Xia Z, Deng Y-N, Yang Y, Zhang P, Zhu H, et al. Emerging microRNA biomarkers for colorectal cancer diagnosis and prognosis. Open Biol. 2019; 9 (1): 180212. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/30958116.
  10. Zelli V, Compagnoni C, Capelli R, Corrente A, Cornice J, Vecchiotti D, et al. Emerging Role of isomiRs in Cancer: State of the Art and Recent Advances. Genes (Basel) 2021; 12 (9). Available from: http://www.ncbi.nlm.nih.gov/pubmed/34573429.
  11. Galatenko VV, Galatenko AV, Samatov TR, Turchinovich AA, Shkurnikov MY, Makarova JA, et al. Comprehensive network of miRNA-induced intergenic interactions and a biological role of its core in cancer. Sci Rep. 2018; 8 (1): 2418. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/29402894.
  12. Nersisyan S, Galatenko A, Galatenko V, Shkurnikov M, Tonevitsky A. miRGTF-net: Integrative miRNA-gene-TF network analysis reveals key drivers of breast cancer recurrence. PLoS One. 2021; 16 (4): e0249424. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/33852600.
  13. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020; 48 (D1): D127–31. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/31504780.
  14. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26 (1): 139–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19910308.
  15. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/35325185.
  16. Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021; 49 (D1): D325–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33290552.
  17. Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018; 18 (9): 533–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30002479.
  18. Dudas J, Ladanyi A, Ingruber J, Steinbichler TB, Riechelmann H. Epithelial to Mesenchymal Transition: A Mechanism that Fuels Cancer Radio/Chemoresistance. Cells. 2020; 9 (2). Available from: http://www.ncbi.nlm.nih.gov/pubmed/32059478.
  19. Takahashi Y, Sawada G, Kurashige J, Matsumura T, Uchi R, Ueo H, et al. Tumor-derived tenascin-C promotes the epithelialmesenchymal transition in colorectal cancer cells. Anticancer Res. 2013; 33 (5): 1927–34. Available from: http://www.ncbi.nlm. nih.gov/pubmed/23645740.
  20. Telonis AG, Loher P, Jing Y, Londin E, Rigoutsos I. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 2015; 43 (19): 9158–75. Available from: http://www.ncbi. nlm.nih.gov/pubmed/26400174.
  21. Cimino D, De Pittà C, Orso F, Zampini M, Casara S, Penna E, et al. miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB J. 2013; 27 (3): 1223–35. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/23233531.
  22. Haflidadóttir BS, Bergsteinsdóttir K, Praetorius C, Steingrímsson E. miR-148 regulates Mitf in melanoma cells. PLoS One. 2010; 5 (7): e11574. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/20644734.
  23. Liu H, Su H, Wang X, Hao W. MiR-148a regulates bone marrow mesenchymal stem cells-mediated fracture healing by targeting insulin-like growth factor 1. J Cell Biochem. 2018. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30335895.
  24. Nersisyan S, Galatenko A, Chekova M, Tonevitsky A. HypoxiaInduced miR-148a Downregulation Contributes to Poor Survival in Colorectal Cancer. Front Genet. 2021; 12: 662468. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34135940.
  25. Zhang H, Li Y, Huang Q, Ren X, Hu H, Sheng H, et al. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ. 2011; 18 (11): 1702–10. Available from: http://www. ncbi.nlm.nih.gov/pubmed/21455217.
  26. Zhao W, Zheng J, Wei G, Yang K, Wang G, Sun X. miR-148a inhibits cell proliferation and migration through targeting ErbB3 in colorectal cancer. Oncol Lett. 2019; 18 (3): 2530–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31402949.
  27. Shi L, Xi J, Xu X, Peng B, Zhang B. MiR-148a suppressed cell invasion and migration via targeting WNT10b and modulating β-catenin signaling in cisplatin-resistant colorectal cancer cells. Biomed Pharmacother. 2019; 109: 902–9. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/30551544.
  28. Li Y, Deng X, Zeng X, Peng X. The Role of Mir-148a in Cancer. J Cancer. 2016; 7 (10): 1233–41. Available from: http://www.ncbi. nlm.nih.gov/pubmed/27390598.
  29. Ma X, Li L, Jia T, Chen M, Liu G, Li C, et al. miR-203a controls keratinocyte proliferation and differentiation via targeting the stemness-associated factor ΔNp63 and establishing a regulatory circuit with SNAI2. Biochem Biophys Res Commun. 2017; 491 (2): 241–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28754589.
  30. Qian Z, Gong L, Mou Y, Han Y, Zheng S. MicroRNA-203a-3p is a candidate tumor suppressor that targets thrombospondin 2 in colorectal carcinoma. Oncol Rep. 2019; 42 (5): 1825–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31545460.