Авторские права: © 2025 принадлежат авторам. Лицензиат: РНИМУ им. Н.И. Пирогова.
Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).

МНЕНИЕ

Современные модели визуализации опухолей у грызунов: возможности и перспективы в трансляционной медицине

Информация об авторах

1 Институт биоорганической химии имени М. М. Шемякина и Ю. А. Овчинникова Российской академии наук, Москва, Россия

2 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия

Для корреспонденции: Надежда Михайловна Мышкина
ул. Миклухо-Маклая, д. 16/10, г. Москва, 117997, Россия; moc.liamg@aydan.anikram

Информация о статье

Финансирование: исследование выполнено за счет гранта Российского научного фонда № 24-74-10105 (https://rscf.ru/project/24-74-10105/).

Вклад авторов: А. А. Фадеева — анализ литературы, написание статьи; Н. М. Мышкина — идея публикации, анализ литературы, написание статьи, руководство проектом; Т. В. Чепурных — написание и редактирование статьи; З. М. Осипова — обработка данных, редактирование статьи.

Статья получена: 04.03.2025 Статья принята к печати: 18.03.2025 Опубликовано online: 27.03.2025
|
  1. Hollingshead MG. Antitumor efficacy testing in rodents. J Natl Cancer Inst. 2008; 100: 1500–10. DOI: 10.1093/jnci/djn351.
  2. Yuzhakova D, Kiseleva E, Shirmanova M, Shcheslavskiy V, Sachkova D, Snopova L, et al. Highly invasive fluorescent/bioluminescent patient-derived orthotopic model of glioblastoma in mice. Front Oncol. 2022; 12: 897839. DOI: 10.3389/fonc.2022.897839.
  3. Utz B, Turpin R, Lampe J, Pouwels J, Klefström J. Assessment of the WAP-Myc mouse mammary tumor model for spontaneous metastasis. Sci Rep. 2020; 10: 18733. DOI: 10.1038/s41598-020-75411-z.
  4. Guo H, Xu X, Zhang J, Du Y, Yang X, He Z, et al. The pivotal role of preclinical animal models in anti-cancer drug discovery and personalized cancer therapy strategies. Pharmaceuticals (Basel). 2024; 17: 1048. DOI: 10.3390/ph17081048.
  5. Wang Z, Cormier RT. Golden Syrian hamster models for cancer research. Cells. 2022; 11: 2395. DOI: 10.3390/cells11152395.
  6. Jackson RK. Unusual laboratory rodent species: Research uses, care, and associated biohazards. ILAR J. 1997; 38: 13–21. DOI: 10.1093/ilar.38.1.13.
  7. Ahmed EN, Cutmore LC, Marshall JF. Syngeneic mouse models for pre-clinical evaluation of CAR T cells. Cancers (Basel). 2024; 16: 3186. DOI: 10.3390/cancers16183186.
  8. Zanella ER, Grassi E, Trusolino L. Towards precision oncology with patient-derived xenografts. Nat Rev Clin Oncol. 2022; 19: 719–32. DOI: 10.1038/s41571-022-00682-6.
  9. Uragami T, Ando Y, Aoi M, Fukui T, Matsumoto Y, Horitani S, et al. Establishment of a novel colitis-associated cancer mouse model showing flat invasive neoplasia. Dig Dis Sci. 2023; 68: 1885–93. DOI: 10.1007/s10620-022-07774-4.
  10. Lottini T, Iorio J, Lastraioli E, Carraresi L, Duranti C, Sala C, et al. Transgenic mice overexpressing the LH receptor in the female reproductive system spontaneously develop endometrial tumour masses. Sci Rep. 2021; 11: 8847. DOI: 10.1038/s41598-021-87492-5.
  11. Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, et al. Preclinical applications of multi-platform imaging in animal models of cancer. Cancer Res. 2021; 81: 1189–200. DOI: 10.1158/0008-5472.CAN-20-0373.
  12. Bausart M, Bozzato E, Joudiou N, Koutsoumpou X, Manshian B, Préat V, et al. Mismatch between bioluminescence imaging (BLI) and MRI when evaluating glioblastoma growth: Lessons from a study where BLI suggested “regression” while MRI showed “progression”. Cancers (Basel). 2023; 15: 1919. DOI: 10.3390/cancers15061919.
  13. Yin C, Hu P, Qin L, Wang Z, Zhao H. The current status and future directions on nanoparticles for tumor molecular imaging. Int J Nanomedicine. 2024; 19: 9549–9574. DOI: 10.2147/IJN.S484206.
  14. Liu B, Zhou H, Tan L, Siu KTH, Guan X-Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther. 2024; 9: 175. DOI: 10.1038/s41392-024-01856-7.
  15. Green AL, DeSisto J, Flannery P, Lemma R, Knox A, Lemieux M, et al. BPTF regulates growth of adult and pediatric high-grade glioma through the MYC pathway. Oncogene. 2020; 39: 2305– 27. DOI: 10.1038/s41388-019-1125-7.
  16. Ravoori MK, Margalit O, Singh S, Kim S-H, Wei W, Menter DG, et al. Magnetic resonance imaging and bioluminescence imaging for evaluating tumor burden in orthotopic colon cancer. Sci Rep. 2019; 9: 6100. DOI: 10.1038/s41598-019-42230-w.
  17. Previdi S, Abbadessa G, Dalò F, France DS, Broggini M. Breast cancer-derived bone metastasis can be effectively reduced through specific c-MET inhibitor tivantinib (ARQ 197) and shRNA c-MET knockdown. Mol Cancer Ther. 2012; 11: 214–23. DOI: 10.1158/1535-7163.MCT-11-0277.
  18. Pennati F, Leo L, Ferrini E, Sverzellati N, Bernardi D, Stellari FF, et al. Micro-CT-derived ventilation biomarkers for the longitudinal assessment of pathology and response to therapy in a mouse model of lung fibrosis. Sci Rep. 2023; 13: 4462. DOI: 10.1038/s41598-023-30402-8.
  19. Tan MJ, Fernandes N, Williams KC, Ford NL. In vivo microcomputed tomography imaging in liver tumor study of mice using Fenestra VC and Fenestra HDVC. Sci Rep. 2022; 12: 22399. DOI: 10.1038/s41598-022-26886-5.
  20. Hesketh RL, Wang J, Wright AJ, Lewis DY, Denton AE, Grenfell R, et al. Magnetic resonance imaging is more sensitive than PET for detecting treatment-induced cell death-dependent changes in glycolysis. Cancer Res. 2019; 79: 3557–69. DOI: 10.1158/0008-5472.CAN-19-0182.
  21. Toner YC, Prévot G, van Leent MMT, Munitz J, Oosterwijk R, Verschuur AVD, et al. Macrophage PET imaging in mouse models of cardiovascular disease and cancer with an apolipoproteininspired radiotracer. Npj Imaging. 2024; 2: 12. DOI: 10.1038/s44303-024-00009-3.
  22. Ito R, Kamiya M, Urano Y. Molecular probes for fluorescence image-guided cancer surgery. Curr Opin Chem Biol. 2022; 67: 102112. DOI: 10.1016/j.cbpa.2021.102112.
  23. Townsend KM, Prescher JA. Recent advances in bioluminescent probes for neurobiology. Neurophotonics. 2024; 11: 024204. DOI: 10.1117/1.NPh.11.2.024204.
  24. Gleneadie HJ, Dimond A, Fisher AG. Harnessing bioluminescence for drug discovery and epigenetic research. Front Drug Discov (Lausanne). 2023; 3: 1249507. DOI: 10.3389/fddsv.2023.1249507.
  25. Kiszka KA, Dullin C, Steffens H, Koenen T, Rothermel E, Alves F, et al. Autonomous bioluminescence emission from transgenic mice. bioRxiv. 2024. DOI: 10.1101/2024.06.13.598801.
  26. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2016; 15: 660. DOI: 10.1038/nrd.2016.178.
  27. Ou Z, Duh Y-S, Rommelfanger NJ, Keck CHC, Jiang S, Brinson K Jr, et al. Achieving optical transparency in live animals with absorbing molecules. Science. 2024; 385: eadm6869. DOI: 10.1126/science.adm6869.
  28. Keck CHC, Schmidt EL, Roth RH, Floyd BM, Tsai AP, Garcia HB, et al. Color-neutral and reversible tissue transparency enables longitudinal deep-tissue imaging in live mice. bioRxivorg. 2025. p. 2025.02.20.639185. DOI: 10.1101/2025.02.20.639185.
  29. Shakhova ES, Karataeva TA, Markina NM, Mitiouchkina T, Palkina KA, Perfilov MM, et al. An improved pathway for autonomous bioluminescence imaging in eukaryotes. Nat Methods. 2024; 21: 406–10. DOI: 10.1038/s41592-023-02152-y.