МЕТОД

Улучшение работы интерфейса глаз–мозг–компьютер при использовании частотных компонентов ЭЭГ

С. Л. Шишкин1, Б. Л. Козырский1,3, А. Г. Трофимов1,3, Ю. О. Нуждин1, А. А. Федорова1, Е. П. Свирин1, Б. М. Величковский2
Информация об авторах

1 Отдел нейрокогнитивных технологий, Курчатовский комплекс НБИКС-технологий,
Национальный исследовательский центр «Курчатовский институт», Москва

2 Курчатовский комплекс НБИКС-технологий,
Национальный исследовательский центр «Курчатовский институт», Москва

3 Факультет кибернетики и информационной безопасности,
Национальный исследовательский ядерный университет «МИФИ», Москва

Для корреспонденции: Шишкин Сергей Львович
пл. Академика Курчатова, д. 1, г. Москва; 123182; ur.liam@nikghsihsgres

Информация о статье

Финансирование: работа выполнена при частичной поддержке Российского научного фонда, грант № 14-28-00234 (получение экспериментальных данных и их предварительная обработка), и Российского фонда фундаментальных исследований, грант № 15-29-01344 (оценка вклада вейвлетных признаков в классификацию).

Статья получена: 08.04.2016 Статья принята к печати: 15.04.2016 Опубликовано online: 05.01.2017
|
  1. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain–computer interfaces for communication and control. Clin Neurophysiol. 2002; 113 (6): 767–791.
  2. BNCI Horizon 2020. The Future of Brain/Neural Computer Interaction: Horizon 2020. Appendix C: End Users. 7th Framework Programme of the European Union. Доступно по ссылке: http://bnci-horizon-2020.eu/roadmap.
  3. Каплан А. Я., Кочетова А. Г., Шишкин С. Л., Басюл И. А., Ганин И. П., Васильев А. Н., Либуркина С. П. Экспериментально-теоретические основания и практические реализации технологии «интерфейс мозг–компьютер». Бюллетень сибирской медицины. 2013; 12 (2): 21–9.
  4. Каплан А. Я. Нерофизиологические основания и практические реализации технологии мозг-машинных интерфейсов в неврологической реабилитации. Физиология человека. 2016; 42 (1): 118–27.
  5. Chen X, Wang Y, Nakanishi M, Gao X, Jung TP, Gao S. High-speed spelling with a noninvasive brain–computer interface. Proc Natl Acad Sci U S A. 2015; 112 (44): E6058–67.
  6. Majaranta P. Text entry by eye gaze [диссертация]. Tampere, Finland: University of Tampere; 2009. Доступно по ссылке: http://tampub.uta.fi/handle/10024/66483.
  7. Jacob RJK. The use of eye movements in human-computer interaction techniques: what you look at is what you get. ACM Transactions on Information Systems. 1991; 9 (2): 152–69.
  8. Velichkovsky BM, Hansen JP. New technological windows into mind: there is more in eyes and brains for human-computer interaction. In: Proceedings of the SIGCHI conference on Human factors in computing systems; 1996 Apr 13–18; Vancouver, BC, Canada. New York: ACM; 1996. p. 496–503.
  9. Pfurtscheller G, Allison BZ, Bauernfeind G, Brunner C, Escalante TS, Scherer R, et al. The hybrid BCI. Front Neurosci. 2010; 4: 42. Доступно по ссылке: http://journal.frontiersin.org/article/10.3389/fnpro.2010.00003/full.
  10. Zander TO, Kothe C. Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J Neural Eng. 2011; 8 (2): 025005.
  11. Protzak J, Ihme K, Zander TO. A passive brain-computer interface for supporting gaze-based human-machine interaction. In: Stephanidis C, Antona M, editors. Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for eInclusion. Springer; 2013. p. 662–71.
  12. Шишкин С. Л., Свирин Е. П., Нуждин Ю. О., Федорова А. А. , Трофимов А. Г., Слободской-Плюснин Я. Ю. и др. Учитесь ждать! Условно-негативная волна поможет отдавать команды взглядом? В сборнике: Печенкова Е. В., Фаликман М. В., редакторы. Когнитивная наука в Москве: новые исследования. М.: БукиВеди; 2015. с. 486–91.
  13. Blankertz B, Lemm S, Treder M, Haufe S, Muller KR. Single-trial analysis and classification of ERP components — a tutorial. NeuroImage. 2011; 56 (2): 814–25.
  14. Schultze-Kraft M, Birman D, Rusconi M, Allefeld C, Gorgen K, Dahne S, et al. The point of no return in vetoing self-initiated movements. Proc Natl Acad Sci U S A. 2016; 113 (4): 1080–5.
  15. Иваницкий Г. А. Распознавание типа решаемой в уме задачи по нескольким секундам ЭЭГ с помощью обучаемого классификатора. Журнал высшей нервной деятельности им. И. П. Павлова. 1997; 47: 743–7.
  16. Dat TH, Shue L, Guan C. Electrocorticographic signal classification based on time-frequency decomposition and nonparametric statistical modeling. Conf Proc IEEE Eng Med Biol Soc. 2006; 1: 2292–5. PMID: 17945704.
  17. Роик А. О., Иваницкий Г. А. Нейрофизиологическая модель когнитивного пространства. Журнал высшей нервной деятельности им. И. П. Павлова. 2011; 60 (6): 688–96.
  18. Frolov A, Husek D, Bobrov P. Comparison of four classification methods for brain-computer interface. Neural Network World. 2011; 21 (2): 101–15.
  19. Frolov A, Husek D, Bobrov P, Mokienko O, Tintera J. Sources of electrical brain activity most relevant to performance of brain-computer interface based on motor imagery. In: Fazel-Rezai R, editor. Brain-Computer Interface Systems: Recent Progress and Future Prospects. InTech; 2013. p. 175–93.