МНЕНИЕ

Новая биолюминесцентная система грибов: перспективы использования в медицинских исследованиях

Информация об авторах

Отдел биомолекулярной химии,
Институт биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова РАН, Москва

Для корреспонденции: Александр Сергеевич Щеглов
ул. Миклухо-Маклая, д. 16/10, г. Москва, 117997; ur.liam@trakuj

Информация о статье

Финансирование: работа поддержана Министерством образования и науки РФ, идентификатор проекта RFMEFI61317X0062.

Статья получена: 15.12.2017 Статья принята к печати: 27.12.2017 Опубликовано online: 05.03.2018
|
  1. Shimomura O. Bioluminescence: chemical principles and methods. Rev.ed. Singapore: World Scientific; 2012.
  2. Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev. 2016; 45 (21): 6048–77. DOI: 10.1039/c6cs00296j.
  3. Kiyama M, Saito R, Iwano S, Obata R, Niwa H, A Maki S. Multicolor bioluminescence obtained using firefly luciferin. Curr Top Med Chem. 2016; 16 (24): 2648–55.
  4. Hirano T. Molecular origin of color variation in firefly (beetle) bioluminescence: A chemical basis for biological imaging. Curr Top Med Chem. 2016; 16 (24): 2638–47.
  5. Nakajim, Y, Ohmiya Y. Bioluminescence assays: multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. Expert Opin Drug Discov. 2010; 5 (9): 835–49. DOI: 10.1517/17460441.2010.506213.
  6. Sun YQ, Liu J, Wang P, Zhang J, Guo W. D-Luciferin Analogues: a Multicolor Toolbox for Bioluminescence Imaging. Angew Chem Int Ed. 2012 Aug 20; 51 (34): 8428–30. DOI: 10.1002/anie.201203565.
  7. Guardigli M, Lundin A, Roda A. ‘‘Classical’’ Applications of Chemiluminescence and Bioluminescence. In: Roda A, editor. Chemiluminescence and Bioluminescence: Past, Present and Future. Cambridge: Royal Society of Chemistry; 2010. p. 143–90.
  8. Tran Q, Lee H, Park J, Kim SH, Park J. Targeting cancer metabolism-revisiting the Warburg effects. Toxicol Res. 2016 Jul; 32 (3): 177–93. DOI: 10.5487/TR.2016.32.3.177.
  9. Sattler UG, Meyer SS, Quennet V, Hoerner C, Knoerzer H, Fabian C et al. Glycolytic metabolism and tumour response to fractionated irradiation. Radiother Oncol. 2010 Jan; 94 (1): 102–9. DOI: 10.1016/j.radonc.2009.11.007.
  10. Broggini-Tenzer A, Vuong V, Pruschy M. Metabolism of tumors under treatment: mapping of metabolites with quantitative bioluminescence. Radiother Oncol. 2011 Jun; 99 (3): 398–403. DOI: 10.1016/j.radonc.2011.05.041.
  11. Slavine NV, McColl RW. Semi-automated Image Processing for Preclinical Bioluminescent Imaging. J Appl Bioinforma Comput Biol. 2015; 4 (1). pii: 114. DOI: 10.4172/2329-9533.1000114.
  12. England CG, Ehlerding EB, Cai W. NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconj Chem. 2016 May 18; 27 (5): 1175–87. DOI: 10.1021/acs.bioconjchem.6b00112.
  13. Schaub FX, Reza MS, Flaveny CA, Li W, Musicant AM, Hoxha S et al. Fluorophore-NanoLuc BRET reporters enable sensitive in vivo optical imaging and flow cytometry for monitoring tumorigenesis. Cancer Res. 2015 Dec 1; 75 (23): 5023–33. DOI: 10.1158/0008-5472.CAN-14-3538.
  14. Kamkaew A, Sun H, England CG, Cheng L, Liu Z, Cai W. Quantum dot–NanoLuc bioluminescence resonance energy transfer enables tumor imaging and lymph node mapping in vivo. Chem Commun. 2016 May 19; 52 (43): 6997–7000. DOI: 10.1039/c6cc02764d.
  15. Hsu CY, Chen CW, Yu HP, Lin YF, Lai PS. Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy. Biomaterials. 2013 Jan; 34 (4): 1204–12. DOI: 10.1016/j.biomaterials.2012.0844.
  16. Kim YR, Kim S, Choi JW, Choi SY, Lee SH, Kim H et al. Bioluminescence-activated deep-tissue photodynamic therapy of cancer. Theranostics 2015; 5(8): 805.
  17. Gupta RK, Patterson SS, Ripp S, Simpson ML, Sayler GS. Expression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae. FEMS Yeast Res. 2003 Dec; 4 (3): 305–13.
  18. Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, Sayler GS. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PloS one. 2010; 5(8): e12441.
  19. Purtov KV, Petushkov VN, Baranov MS, Mineev KS, Rodionova NS, Kaskova ZM et al. The chemical basis of fungal bioluminescence. Angew Chem Int Ed Engl. 2015 Jul 6; 54 (28): 8124–8. DOI: 10.1002/anie.201501779.
  20. Kaskova ZM, Dörr FA, Petushkov VN, Purtov KV, Tsarkova AS, Rodionova NS et al. Mechanism and color modulation of fungal bioluminescence. Sci Adv. 2017 Apr 26; 3 (4): e1602847. DOI: 10.1126/sciadv.1602847.
  21. Oba Y, Suzuki Y, Martins GN, Carvalho, RP, Pereira TA, Waldenmaier HE et al. Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body. Photochem Photobiol Sci. 2017 Sep 13; 16 (9): 1435–40. DOI: 10.1039/c7pp00216e.
  22. Berner M, Krug D, Bihlmaier C, Vente A, Müller R, Bechthold A. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J Bacteriol. 2006 Apr; 188 (7): 2666–73. DOI: 10.1128/JB.188.7.2666-2673.2006.