ORIGINAL RESEARCH
Evaluation of absorbed dose distribution in melanoma B16F10 during contrast enhanced radiotherapy with intratumoral administration of dose-enhancing agent
1 Blokhin National Medical Research Center of Oncology, Moscow, Russia
2 Burnasyan Federal Medical Biophysical Center, Moscow, Russia
3 Kurnakov Institute of General and Inorganic Chemistry, Moscow
4 Pirogov Russian National Research Medical University, Moscow, Russia
5 National University of Science and Technology "MISiS", Moscow
6 Skolkovo Institute of Science and Technology, Moscow
7 The Loginov Moscow Clinical Scientific Center, Moscow, Russia
Correspondence should be addressed: Alexey A. Lipengolts
Kashirskoe shosse 24, Moscow, 115478; ur.liam@stlognepil
Funding: the study was supported by the Russian Science Foundation (Project ID 18-13-00459).
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015 Jan; 65 (1): 5–29.
- Robar JL, Riccio S, Martin M. Tumour dose enhancement using modified megavoltage pho-ton beams and contrast media. Phys Med Biol. 2002 Jul 21; 47 (14): 305.
- Kulakov VN, Lipengolts AA, Grigoreva EY, Shimanovskii NL. Pharmaceuticals for Binary Radiotherapy and Their Use for Treatment of Malignancies (A Review). Pharm Chem J. 2016 Sep 8; 50 (6): 388–93.
- Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the Theo-rectical Radiation Dose Enhancement from Nanoparticles. Technol Cancer Res Treat. 2007; 6 (5): 395– 401.
- Norman A, Ingram M, Skillen RG, Freshwater DB, Iwamoto KS, Solberg T. X-ray photother-apy for canine brain masses. Radiat Oncol Investig. 1997; 5 (1): 8–14.
- Miladi I, Alric C, Dufort S, et al. The In Vivo Radiosensitizing Effect of Gold Nanoparticles Based MRI Contrast Agents. Small. 2014; 10 (6): 1116–24.
- Le Duc G, Miladi I, Alric C, et al. Toward an Image-Guided Microbeam Radiation Therapy Using Gadolinium-Based Nanoparticles. ACS Nano. 2011; 5 (12): 9566–74.
- Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold nano-particles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol. 2010; 55 (11): 3045–59.
- Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiothera-py in mice. Phys Med Biol. 2004; 49 (18): 309–15.
- Hainfeld JF, Smilowitz HM, O’Connor MJ, Dilmanian FA, Slatkin DN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine. 2013; 8 (10): 1601–09.
- Dufort S, Le Duc G, Salomé M, et al. The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors. Sci Rep. 2016; 6 (June): 1–8.
- Komatsu T, Nakamura K, Okumura Y, Konishi K. Optimal method of gold nanoparticle ad-ministration in melanoma bearing mice. Exp Ther Med. 2018 Jan 12; 15 (3): 2994–9.
- Rousseau J, Boudou C, Estève F, Elleaume H. Convection- Enhanced Delivery of an Iodine Tracer Into Rat Brain for Synchrotron Stereotactic Radiotherapy. Int J Radiat Oncol. 2007 Jul; 68 (3): 943–51.
- Mello RS, Callisen H, Winter J, Kagan a R, Norman A. Radiation dose enhancement in tu-mors with iodine. Med Phys [Internet]. 1983 Jan; 10 (1): 75–8.
- Lipengolts AA, Cherepanov AA, Kulakov VN, Grigoreva EY, Merkulova IB, Sheino IN. Comparison of the Antitumor Efficacy of Bismuth and Gadolinium as Dose-Enhancing Agents in Formulations for Photon Capture Therapy. Pharm Chem J. 2017 Dec 5; 51 (9): 783–6.
- Cherepanov AA, Lipengolts AA, Nasonova TA, Dobrynina OA, Kulakov VN, Sheino IN et al. Increasing of antineoplastic effect of x-ray irradiation in mice with transplanted melanoma B16F10 by use of gadolinium containing drug. Meditsinskaya fizika. 2014; (3): 66–9. (in Russian)
- Maggiorella L, Barouch G, Devaux C, Pottier A, Deutsch E, Bourhis J, et al. Nanoscale radio-therapy with hafnium oxide nanoparticles. Futur Oncol. 2012; 8 (9): 1167–81.
- Bonvalot S, Le Pechoux C, De Baere T, Kantor G, Buy X, Stoeckle E, et al. First-in-Human Study Testing a New Radioenhancer Using Nanoparticles (NBTXR3) Activated by Radiation Therapy in Patients with Locally Advanced Soft Tissue Sarcomas. Clin Cancer Res. 2017 Feb 15; 23 (4): 908–17.
- Hainfeld JF, O’Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smilowitz HM. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tu-mour regions. Br J Radiol. 2011; 84 (1002): 526–33. DOI:10.1259/ bjr/42612922.
- Le Duc G, Corde S, Charvet A-M, Elleaume H, Farion R, Le Bas J-F, et al. In Vivo Meas-urement of Gadolinium Concentration in a Rat Glioma Model by Monochromatic Quantitative Computed Tomography. Invest Radiol. 2004 Jul; 39 (7): 385–93.
- Lipengolts AA, Budaeva JA, Blaickner M, Cherepanov AA, Menkov MA, Kulakov VN, et al. Iodine quantification with computed tomography for the purpose of dose assessment in contrast enhanced radiotherapy. Bull Russ State Med Univ. 2016; (6): 16–9.
- Pervova VV, Lipengolts AA, Cherepanov AA, Abakumov MA. Study of iodine, gadolinium and bismuth quantification possibility with micro-CT IVIS spectrumct in vivo imaging system. J Phys Conf Ser. 2017; 784 (1): 12043.
- Vorobyeva ES, Lipengolts AA, Cherepanov AA, Grigorieva EY, Nechkina IN, Kalygina NS, et al. Feasibility of using 6 MV photon beams in contrast-enhanced radiotherapy. Bull Russ State Med Univ. 2017; (4): 57–61.
- Cherepanov AA, Lipengolts AA , Vorobyeva ES, Kulakov VN, Klimanov VA, Grigorieva EYu. Experimental study of x-rays absorbed dose increase in medium containing high-Z element using Fricke dosimeter. Meditsinskaya fizika. 2016; 72 (4): 38–41. (in Russian)
- Bristow RG, Hill RP. Comparison between in vitro radiosensitivity and in vivo radioresponse in murine tumor cell lines II: in vivo radioresponse following fractionated treatment and in vitro/in vivo correlations. Int J Radiat Oncol. 1990 Feb; 18 (2): 331–45.
- Le UM, Kaurin DGL, Sloat BR, Yanasarn N, Cui Z. Localized irradiation of tumors prior to synthetic dsRNA therapy enhanced the resultant anti-tumor activity. Radiother Oncol. 2009 Feb; 90 (2): 273–9.