ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Наноструктурированный фотосенсибилизатор на основе тетракатионного производного бактериохлорина для антибактериальной фотодинамической терапии

Г. А. Меерович 1,2, Е. В. Ахлюстина2, И. Г. Тиганова3, Е. А. Макарова4, Н. И. Филипова3, И. Д. Романишкин1, Н. В. Алексеева 3, Е. А. Лукьянец4, Ю. М. Романова 3, В. Б. Лощёнов1
Информация об авторах

1 Институт общей физики имени А. М. Прохорова РАН, Москва

2 Кафедра лазерных микро- и нанотехнологий, Инженерно-физический институт биомедицины, Национальный исследовательский ядерный университет «МИФИ», Москва

3 Лаборатория генной инженерии патогенных микроорганизмов, Национальный исследовательский центр эпидемиологии и микробиологии имени Н. Ф. Гамалеи, Москва

4 Научно-исследовательский институт органических полупродуктов и красителей, Москва

Для корреспонденции: Геннадий Александрович Меерович
ул. Вавилова, д. 38, г. Москва, 119991;

Статья получена: 31.08.2018 Статья принята к печати: 27.09.2018 Опубликовано online: 31.12.2018
|

Антибактериальная фотодинамическая терапия (АФДТ) является перспективным способом лечения локальных инфицированных очагов, в частности хирургических и ожоговых ран, трофических и диабетических язв [1, 2]. При АФДТ в отличие от антибиотикотерапии разрушение бактериальных клеток происходит без развития резистентности в ответ на лечение [36]. Большинство патогенных микроорганизмов, в том числе устойчивые к антибиотикам штаммы бактерий, восприимчиво к АФДТ [7].
В локальных инфицированных очагах, в частности инфицированных ранах, наиболее часто обнаруживаются грамположительные бактерии Staphylococcus aureus (S. aureus), грамотрицательные бактерии Pseudomonas aeruginosa (P. aeruginosa) и Klebsiella pneumoniae (K. pneumoniae), штаммы которых могут обладать множественной антибиотикорезистентностью, приводить к переходу процесса в хроническое состояние и различным опасным последствиям для пациентов [8].

Грамположительные и грамотрицательные бактерии имеют принципиальные различия в своем строении и чувствительности к лекарственному воздействию. Клеточная стенка грамположительных бактерий не оказывает существенного влияния на проникновение в них большинства фотосенсибилизаторов (ФС). У грамотрицательных бактерий она обладает дополнительным структурным элементом — наружной мембраной толщиной 10–15 нм, имеющей гетерогенный состав (белки с пориновой функцией, липополисахаридные тримеры и липопротеины, создающие внешнюю псевдоповерхность плотно упакованных отрицательных зарядов) [911]. Такая система препятствует проникновению гуморальных защитных факторов организма и является причиной устойчивости ко многим лекарственным препаратам: через пориновые каналы диффундируют только относительно гидрофильные соединения с молекулярной массой ниже 700 Да, а при увеличении размеров и массы молекул вероятность их диффузии внутрь грамотрицательных бактерий снижается. С грамотрицательными бактериями эффективно взаимодействуют только катионные ФС [10, 11]. Дополнительным преимуществом катионных ФС может быть возможность использования для сенсибилизации их высококонцентрированных водных композиций (растворов или нанодисперсий), поскольку кулоновское отталкивание молекул катионных бактериохлоринов может частично уменьшить их агрегацию [12], снижающую эффективность фотодинамических процессов.

При выборе ФС для АФДТ необходимо иметь в виду, что глубина очагов инфекционного поражения некоторыми бактериями, например P. аeruginosa, может достигать 12–15 мм [13], делая неэффективным применение как обычных аппликационных антибактериальных средств (растворов, мазей, гелей), так и ФС, проявляющих фототоксичность при возбуждении в видимом диапазоне спектра. Поэтому для надлежащего фотодинамического воздействия на такие очаги необходимо использовать для АФДТ ФС ближнего инфракрасного диапазона, возбуждение которых осуществляется в «спектральном окне прозрачности биологической ткани» (720–850 нм). В связи с этим в качестве ФС для АФДТ активно исследуют катионные производные бактериохлоринов. Исследования, проведенные на поликатионных производных синтетических бактериохлоринов с молекулярной массой 1500–1800 Да, показали, что эти ФС обеспечивают инактивацию как грамположительных бактерий S. aureus, так и грамотрицательных бактерий P. aeruginosa, однако значения минимальной бактерицидной концентрации при использовании этих ФС достаточно высоки (> 6 мкМ на S. aureus, около 25 мкМ на P. aeruginosa) [14].

Задача повышения эффективности антибактериальной ФДТ делает актуальными создание и исследование ФС на основе поликатионных синтетических бактериохлоринов с уменьшенными размером молекулы и молекулярной массой. Целью работы было изучить в широком диапазоне концентраций фотофизические и антибактериальные свойства наноструктурированного ФС на основе тетракатионного амфифильного производного синтетического бактериохлорина мезо-тетра(1-гептил-3-пиридил)бактерио-хлорина тетрабромида 3-Py4BСHp4Br4.

МАТЕРИАЛЫ И МЕТОДЫ

Тетракатионное амфифильное производное синтетического бактериохлорина — мезо-тетра(1-гептил-3-пиридил) бактериохлорина) тетрабромид 3-Py4BСHp4Br4 — обладает меньшей степенью липофильности и меньшим радиусом молекулы по сравнению с производным, описанным ранее [14]. Оно было синтезировано алкилированием мезо-тетра(3-пиридил)бактериохлорина бромистым гептилом в нитрометане в инертной атмосфере. Наноструктурированную дисперсию 3-Py4BСHp4Br4 получили путем его солюбилизации в 4%-й дисперсии Kolliphor ELP (BASF; Германия). Гидродинамический размер наночастиц, по результатам измерений на приборе Zetasizer Nano Series ZS 3600 (Malvern Panalitical; Великобритания), лежит в пределах 12–14 нм.

Поглощение ФС в диапазоне концентраций 0,001–0,1 мМ изучали на двухлучевом спектрофотометре Hitachi U-3410 (Hitachi; Япония), а спектрально-флуоресцентные исследования проводили с использованием спектроанализатора ЛЭСА-01-Биоспек (ООО БИОСПЕК; Россия). Флуоресценцию возбуждали лазерным излучением с длиной волны 532 нм, попадающей в Q2-полосу производного бактериохлорина. Для изучения особенностей формы спектральной полосы спектрально-флуоресцентные исследования ФС проводили в кюветах разной длины (1 мм и 10 мм), а спектральную интенсивность флуоресценции дополнительно нормировали на интенсивность флуоресценции в спектральном максимуме ее полосы (приводили спектральный максимум к 1). Это позволило при анализе спектров разделить изменения, связанные с перепоглощением и агрегацией.

Для измерения времени жизни люминесценции водных композиций исследуемых ФС использовали спектрометр с время-разрешающей регистрацией. Спектрометр включал в себя пикосекундный импульсный лазерный источник с оптоволоконным выходом Picosecond Light Pulser PLP-10 (Hamamatsu; Япония), генерирующий импульсное лазерное излучение с длиной волны 637 нм и длительностью импульса 65 пс, полихроматор Jarrell-Ash (Division of Fisher Co; США) с оптоволоконным входом и оптическим фильтром Semrock LD01-785/10-12.5 (Semrock Inc; США) на входе, который пропускал только спектральную область полосы люминесценции производных бактериохлоринов и минимизировал влияние сторонних засветок. Полученный сигнал аппроксимировали суммой нескольких экспонент.
Изучение фотоинактивации планктонных бактерий проводили на клинических изолятах S. aureus 15, P. aeruginosa 32, K. pneumoniae 1556. Бактерии выращивали в питательном бульоне LB или на 1%-м агаре LB (Difco; США). Для планктонных культур определяли минимальную бактерицидную концентрацию (МБК) ФС в стандартных условиях: инкубация бактерий с ФС в течение 30 мин, плотность дозы облучения — 20 Дж/см2.
Исходный титр бактерий составляли 1 • 108 КОЕ/мл (колониеобразующих единиц в миллилитре). Использовали двукратные разведения ФС, начиная с 1 мМ. После инкубации бактериальную суспензию центрифугировали в течение 5 мин при 7000 об./мин на лабораторной центрифуге Eppendorf (Eppendorf; Германия), ФС удаляли, бактерии ресуспендировали в физиологическом растворе, суспензии каждой концентрации (а также контроль без ФС) разливали по 100 мкл в лунки двух 96-луночных плоскодонных планшетов. Один из них был предназначен для опыта с облучением, другой для контроля без облучения.
Для облучения использовали светодиодный источник СФД-М-760 (АНО «МИКЭЛ»; Россия) с длиной волны спектрального максимума 760 нм и полушириной спектральной полосы, равной примерно 35 нм. Плотность мощности составляла 22–25 мВт/см2, длительность облучения — 20 мин. Для контроля плотности мощности использовали измеритель Coherent labmax (Coherent; США) с диафрагмой.
После облучения 50 мкл из каждой лунки высевали на чашки Петри с агаром LB, инкубировали в темноте при 37 °С в течение 20 ч. Отмечали наименьшую концентрацию ФС, высев из которой не давал роста. Эту концентрацию принимали за МБК.

РЕЗУЛЬТАТЫ

Изучение зависимости поглощения 3-Py4BСHp4Br4 от его концентрации в нанодисперсии проводили для оценки выраженности агрегационных процессов. Рабочая полоса поглощения 3-Py4BСHp4Br4 имеет узкий спектральный контур (полуширина составляет примерно 22 нм) с максимумом около 760 нм. Исследования показали, что в отличие от поликатионных фталоцианинов признаки агрегации в спектрах поглощения дисперсии 3-Py4BСHp4Br4 не выражены [15]: форма спектра поглощения не изменяется при увеличении концентрации; зависимость оптической плотности от молярной концентрации линейна (выполняется закон Бугера) и согласуется со значениями экстинкции, определенными при низких концентрациях (рис. 1).
Для подтверждения высказанного предположения о невысокой степени агрегации изучаемого ФС проводили спектрально-флуоресцентные исследования его нанодисперсии. Изучали форму и интенсивность спектров флуоресценции, а также излучательное время жизни возбужденного состояния 3-Py4BСHp4Br4 при высоких и низких значениях концентрации.
Анализ приведенных спектров флуоресценции ФС показывает, что увеличение длины кюветы от 1 до 10 мм при низких (0,005 мМ) значениях концентрации не влияет на форму спектрального контура (рис. 2, спектры 1, 2), приводя только к незначительному (на 0,3 нм) сдвигу спектрального максимума из-за перепоглощения. При этом полоса флуоресценции остается узкой (27 нм).
При высоких (0,05 мМ) значениях концентрации, примерно соответствующих концентрации ФС в плазме крови через 1 ч после внутривенного введения, из-за перепоглощения происходит длинноволновое смещение спектрального максимума полосы флуоресценции, зависящее от длины кюветы (на 1,5 нм — в кювете длиной 1 мм и на 3,4 нм — в кювете длиной 10 мм). При этом увеличивается и полуширина полосы флуоресценции (в кювете 1 мм — на 1,1 нм, а в кювете 10 мм — на 4,3 нм), но форма спектрального контура не меняется, в нем не появляются дополнительные батохромно и гипсохромно сдвинутые пики.
Исследование излучательного времени жизни с использованием ранее описанного подхода [16] показало наличие двух компонент. Доминирующей при исследованиях в воде является компонента со средним значением времени жизни, равным 2,8 нс, доля которой составляет примерно 86%. В плазме крови, где агрегация снижается, доминирующая компонента со средним значением времени жизни, равным около 2,9 нс, составляет почти 100%.
Зависимость интегральной интенсивности флуоресценции дисперсии от концентрации ФС близка к линейной до 0,03 мМ (рис. 3), а при более высоких концентрациях становится сублинейной. Такая же зависимость наблюдается для композиции 3-Py4BСHp4Br4 в плазме крови. При этом форма кривых почти не изменяется, хотя интенсивность флуоресценции в плазме крови выше по сравнению с интенсивностью флуоресценции в воде в 1,3–1,4 раза.
Результаты определения МБК 3-Py4BСHp4Br4 в стандартных условиях представлены в таблица.

ОБСУЖДЕНИЕ

Результаты исследования поглощения ФС свидетельствуют о невысокой степени их агрегации в изучаемом диапазоне концентраций [15], поскольку во всем диапазоне его концентраций форма и полуширина спектра полосы поглощения не изменяются, а поглощение линейно зависит от концентрации.
Анализ особенностей изменения формы спектральной полосы флуоресценции при увеличении концентрации и длины кюветы позволяет предположить, что наблюдаемые явления, происходящие при высокой концентрации изучаемого ФС, связаны преимущественно с перепоглощением; при этом имеет место и агрегация, но вклад ее незначителен. Об этом же свидетельствуют результаты изучения излучательного времени жизни возбужденного состояния ФС на основе 3-Py4BСHp4Br4 и зависимости интенсивности флуоресценции от концентрации 3-Py4BСHp4Br4 в дисперсии, особенно в плазме крови [1721].
Эти данные позволяют сделать вывод, что эффективность фотодинамических процессов при высоких концентрациях 3-Py4BСHp4Br4 не будет снижаться и дает возможность использовать нанодисперсии 3-Py4BСHp4Br4 с такими концентрациями для сенсибилизации при АФДТ.
По сравнению с ФС на основе катионных бактериохлоринов, описанных ранее [14], 3-Py4BСHp4Br4 имеет значительно более низкие значения МБК для грамположительных бактерий S. aureus и грамотрицательных бактерий P. aeruginosa в планктонном состоянии. Низкие значения МБК получены также для грамотрицательных бактерий K. pneumoniae.

ВЫВОДЫ

Результаты исследований показывают, что исследуемый тетракатионный ФС на основе синтетического амфифильного производного бактериохлорина 3-Py4BСHp4Br4 с уменьшенными размером молекулы и молекулярной массой обладает высокой эффективностью фотодинамической инактивации грамположительных бактерий S. aureus и грамотрицательных бактерий P. aeruginosa и K. pneumoniae. Исследования фотофизических свойств ФС в широком диапазоне концентраций продемонстрировали его низкую агрегацию в воде и плазме крови. Результаты исследований позволяют сделать вывод, что ФС на основе наноструктурированной формы 3-Py4BСHp4Br4 перспективен для фотодинамического лечения локальных инфицированных очагов, вызванных грамположительными и грамотрицательными бактериями.

КОММЕНТАРИИ (0)