Copyright: © 2018 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

The use of iron oxide magnetic nanospheres and nanocubes for targeted doxorubicin delivery into 4t1 mouse breast carcinoma cells

About authors

1 Laboratory of Biomedical Nanomaterials National University of Science and Technology MISiS, Moscow

2 Research Laboratory of Tissue-Specific Ligands, Faculty of Chemistry, Lomonosov Moscow State University, Moscow

3 Department of physical materials science, National University of Science and Technology MISiS, Moscow

Correspondеnce should be adressed: Timur R. Nizamov
Leninsky 4, Moscow, 119049; moc.liamg@rumit.vomazin

About paper

Funding: the study was supported by the Ministry of Education and Science of the Russian Federation in the context of the Agreement #14.578.21.0201 (project code RFMEFI57816X0201).

Received: 2018-08-28 Accepted: 2018-09-20 Published online: 2018-12-31
|
  1. Ling D, Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. 2013; 9 (9–10): 1450–66. DOI:10.1002/smll.201202111.
  2. Majewski P, Thierry B. Functionalized Magnetite Nanoparticles — Synthesis, Properties, and Bio-Applications. Crit Rev Solid State Mater Sci. 2007; 32 (3–4): 203–15.DOI:10.1080/10408430701776680.
  3. Xie J, Huang J, Li X, Sun S, Chen X. Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem. 2009; 16 (10): 1278–94. DOI:10.2174/092986709787846604.
  4. Oh JK, Park JM. Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Prog Polym Sci. 2011; 36 (1): 168–89. DOI:10.1016/j. progpolymsci.2010.08.005.
  5. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev. 2008; 108 (6): 2064–110. DOI:10.1021/ cr068445e.
  6. Lin JJ, Chen JS, Huang SJ, Ko JH, Wang YM, Chen TL et al. Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials. 2009; 30 (28): 5114–24. DOI:10.1016/j.biomaterials.2009.06.004.
  7. Andhariya N, Chudasama B, Mehta RV, Upadhyay RV. Biodegradable thermoresponsive polymeric magnetic nanoparticles: A new drug delivery platform for doxorubicin. J Nanoparticle Res. 2011; 13 (4): 1677–88. DOI:10.1007/s11051-010-9921-6.
  8. Tavano L, Vivacqua M, Carito V, Muzzalupo R, Caroleo MC, Nicoletta F. Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloids Surfaces B Biointerfaces. 2013; (102): 803–7. DOI:10.1016/j.colsurfb.2012.09.019.
  9. Jain TK, Foy SP, Erokwu B, Dimitrijevic S, Flask CA, Labhasetwar V. Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice. Biomaterials. 2009; 30 (35): 6748–56. DOI:10.1016/j.biomaterials.2009.08.042.
  10. Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J Appl Toxicol. 2009; 29 (1): 69–78. DOI:10.1002/ jat.1385.
  11. Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K et al. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med. 2009; 20 (1): 235–41. DOI:10.1007/s10856-008- 3548-5.
  12. Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials. 2010; 31 (3):438–48. DOI:10.1016/j. biomaterials.2009.09.060.
  13. Xiong Y, Brunson M, Huh J, Huang A, Coster A, Wendt K et al. The role of surface chemistry on the toxicity of Ag nanoparticles. Small. 2013; 9 (15): 2628–38. DOI:10.1002/smll.201202476.
  14. Tarantola M, Pietuch A, Schneider D, Rother J, Sunnick E, Rosman C et al. Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology. 2011; 5 (2): 254–68. DOI:10.3109 /17435390.2010.528847.
  15. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013; 65 (2): 157–70. DOI:10.1111/ j.2042-7158.2012.01567.x.
  16. Gautier J, Munnier E, Paillard A, Hervé K, Douziech-Eyrolles L, Soucé M et al. A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int J Pharm. 2012; 423 (1): 16–25. DOI:10.1016/j.ijpharm.2011.06.010.
  17. Yu WW, Falkner JC, Yavuz CT, Colvin VL. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun. 2004; (20): 2306–7. DOI:10.1039/b409601k.
  18. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004; 3 (12): 891–5. DOI:10.1038/nmat1251.
  19. Hai HT, Yang HT, Kura H, Hasegawa D, Ogata Y, Takahashi M et al. Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. J Colloid Interface Sci. 2010; 346 (1): 37–42. DOI:10.1016/j. jcis.2010.02.025.
  20. Simon T, Boca S, Biro D, Baldeck P, Astilean S. Gold-Pluronic core-shell nanoparticles: Synthesis, characterization and biological evaluation. J Nanoparticle Res. 2013; 15 (4): 1578. DOI:10.1007/ s11051-013-1578-5.
  21. Gonzales M, Krishnan KM. Phase transfer of highly monodisperse iron oxide nanocrystals with Pluronic F127 for biomedical applications. J Magn Magn Mater. 2007; 311 (1): 59–62. DOI:10.1016/j.jmmm.2006.10.1150.
  22. Zhou Z, Zhu X, Wu D, Chen Q, Huang D, Sun C et al. Anisotropic shaped iron oxide nanostructures: Controlled synthesis and proton relaxation shortening effects. Chem Mater. 2015; 27 (9): 3505–15. DOI:10.1021/acs.chemmater.5b00944.
  23. Kolosnjaj-Tabi J, Di Corato R, Lartigue L, Marangon I, Guardia P, Silva AKA et al. Heat-Generating Iron Oxide Nanocubes: Subtle "Destructurators" of the Tumoral Microenvironment. ACS Nano. 2014; 8 (5): 4268–83. DOI:10.1021/nn405356r.
  24. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M et al. Water Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment. ACS nano. 2012; 6 (4): 3080–91. DOI:10.1021/nn2048137.
  25. Nemati Z, Alonso J, Martinez LM, Khurshid H, Garaio E, Garcia JA et al. Enhanced Magnetic Hyperthermia in Iron Oxide Nano- Octopods: Size and Anisotropy Effects. J Phys Chem C. 2016; 120 (15): 8370–9. DOI:10.1021/acs.jpcc.6b01426.
  26. Lee N, Kim H, Choi SH, Park M, Kim D, Kim H-C et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci. 2011; 108 (7): 2662–7. DOI:10.1073/ pnas.1016409108.
  27. Nizamov TR, Garanina AS, Grebennikov IS, Zhironkina OA, Strelkova OS, Alieva IB et al. Effect of Iron Oxide Nanoparticle Shape on Doxorubicin Drug Delivery Toward LNCaP and PC-3 Cell Lines. BioNanoScience. 2018; 8 (1): 394–406. DOI:10.1007/ s12668-018-0502-y.
  28. Kievit FM, Wang FY, Fang C, Mok H, Wang K, Silber JR et al. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release. 2011; 152 (1): 76–83. DOI:10.1016/j.jconrel.2011.01.024.