REVIEW

Precision oncology: myth or reality?

Slavyanskaya TA1, Salnikova SV2
About authors

1 Peoples’ Friendship University of Russia, Moscow, Russia

2 Institute of Immunophysiology, Moscow, Russia

Correspondence should be addressed: Tatiana A. Slavyanskaya
Miklouho-Maclay 6, Moscow, 117198; moc.liamg@ayaksnayvalst

Received: 2018-08-24 Accepted: 2019-03-25 Published online: 2019-03-31
|
  1. Kudryavceva IV, Slavyanskaya TA, Trunov AN, Trunova LA. Urovni autoantitel k jadernym DNK, laktoferrina i nekotorye immunologicheskie pokazateli u bol'nyh revmatoidnym artritom. Bjulleten' Sibirskogo otdelenija Rossijskoj akademii medicinskih nauk. 1999; 19 (3–4): 66–8.
  2. Smipnova TA, Ponomapeva EP, Hanfepjan PA, Kolesnikov VV. Opyt primenenija ronkolejkina pri terapii jazvennoj bolezni zheludka, associirovannoj s Helicobacter Pylori, v ambulatornyh uslovijah. Terapevticheskij arhiv. 2009; 81 (2): 30–5.
  3. Slavyanskaya TA, Sepiashvili RI, Vishnyakov MN, Chihladze MV. Immunologicheskij monitoring bol'nyh hronicheskim bronhitom v dinamike vosstanovitel'noj immunoreabilitacii. International Journal on Immunorehabilitation. 1999; (11): 70.
  4. Slavyanskaya TA, Avdonkina NA, Salnikova SV. Optimizacija uslovij poluchenija zhiznesposobnoj pervichnoj kul'tury kletok urotelial'noj karcinomy. Allergologija i immunologija. 2016; 17 (3): 176–9.
  5. Burger M, Thiounn N, Denzinger S, Kondas J, Benoit G, Chapado MS, et al. The application of adjuvant autologous antravesical macrophage cell therapy vs. BCG in non-muscle invasive bladder cancer: a multicenter, randomized trial. J Transl Med. 2010; (8): 54.
  6. Camisaschi C, Vallacchi V, Vergani E, et al. Targeting immune regulatory networks to counteract immune suppression in cancer. Vaccines (Basel). 2016; 4 (4): pii: E38.
  7. Dominguez G, Condamine TC, Mony S, et al. Selective targeting of myeloid-derived suppressor cells in cancer patients using DS- 8273a, an agonistic TRAIL-R2 antibody. Clin Cancer Res. 2016; 23 (12): 2942–50.
  8. Sharma P, Retz M, Seifker-Radtke A, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (Check-Mate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017; 18 (3): 312–22.
  9. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; (373): 23–34.
  10. Sepiashvili RI, Beljaev AM. Immunoterapija raka: problemy i perspektivy. Allergologija i immunologija. 2015; 16 (4): 354–7.
  11. Salnikova SV, Slavyanskaya TA, i dr. Innovacionnye tehnologii v lechenii raka mochevogo puzyrja. Allergologija i immunologija. 2016; 17 (1): 21–6.
  12. Salnikova SV, Slavyanskaya TA, i dr. Sovremennye podhody i dostizhenija v lechenii raka mochevogo puzyrja. Allergologija i immunologija. 2016; 17 (1): 50–1.
  13. Baldueva IA, Novik AV, Karickij AP, Kuleva SA, Nehaeva TL, Danilova AB, i dr. Immunoterapija raka: sovremennoe sostojanie problemy. Allergologija i immunologija. 2015; 16 (4): 354.
  14. Slavyanskaya TA, Salnikova SV. Immunologicheskie kriterii i markery dlja diagnostiki i prognozirovanija raka mochevogo puzyrja. International Journal on Immunorehabilitation. 2009; 11 (1): 24.
  15. Slavyanskaya TA, Salnikova SV. Immunologic criteria and markers for diagnostics and prognosis of urinary bladder cancer. Int J Immunoreh. 2009; 11 (2): 180.
  16. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017; 357 (6352). DOI: 10.1126/science.aan2507.
  17. Svitich OA, Filina AB, Gankovskaja LV, Zverev VV. Rol' faktorov vrozhdennogo immuniteta v processe opuholeobrazovanija. Medicinskaja immunologija. 2018; 20 (2): 151–62.
  18. Haitov RM, Kadagidze ZG. Immunitet i rak. M.: Geotar–Media, 2018. 256 c.
  19. Crowe NY, Coquet JM, Berzins SP, et al. Differential Antitumor Immunity Mediated by NKT Cells Subsets in Vivo. J Exp Med. 2005; (202): 1279–88.
  20. Brandes M, Willimann K, Moser B. Professional Antigen-presentation Function by Human Gammadelta T Cells. Science. 2005; (309): 264–8.
  21. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011; 480 (7378): 480–9.
  22. Shevach EM. CD4+, CD25+ suppressor T-cells: More Questions than Answers. Nat Rev Immunol. 2002; (2): 389–400.
  23. Lima L, Oliveira D, Tavares A, Amaro T, Cruz R, Oliveira MJ, et al. The predominance of M2-polarized macrophages in the stroma of low- hypoxic bladder tumors is associated with BCG immunotherapy failure. Urol Oncol. 2014; (32): 449–57.
  24. LaRue H, Ayari C, Bergeron A, Fradet Y. Toll-like receptors in urothelial cells-targets for cancer immunotherapy. Nat Rev Urol. 2013; 10 (9): 537–45.
  25. Diesendruck Y, Benhar I. Novel immune check point inhibiting antibodies in cancer therapy-opportunities and challenges. Drug Resist Updat. 2017; (30): 39–47.
  26. Kavecansky J, Pavlick AC. Beyond Checkpoint Inhibitors: pii: E189The Next Generation of Immunotherapy in Oncology. AJHO. 2017; 13 (2): 9–20.
  27. Ata R, Antonescu CN. Integrins and cell metabolism: an intimate relationship impacting cancer. Int J Mol Sci. 2017; 18 (1). DOI: 10.3390/ijms18010189.
  28. Hadley GA, Higgins JM. Integrin αEβ7: molecular features and functional significance in the immune system. Adv Exp Med Biol. 2014; (819): 97–110.
  29. Takimoto C. Forty Seven, Inc. Trial of Hu5F9-G4 in combination with cetuximab in patients with solid tumors and advanced colorectal cancer (NCT02953782). Accessed February 8, 2017; Clinicaltrials. gov website. Available from: https://clinicaltrials.gov/ ct2/show/NCT02953782? ter-m=NCT02953782 & rank=1.
  30. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010; 10 (1): 9–22.
  31. Hersey P, Sosman J, O’Day S, et al. Etaracizumab Melanoma Study Group. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or – dacarbazine in patients with stage IV metastatic melanoma. Cancer. 2010; 116 (6): 1526–34.
  32. Sturgill ER, Redmond WL. TNFR Agonists: A Review of Current Biologics Targeting OX40, 4-1BB, CD27, and GITR. AJHO. 2017; 13 (11): 4–15.
  33. Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014; (6): 1–21.
  34. Desar IM, Jacobs JH, Hulsbergen-vandeKaa CA, et al. Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int J Cancer. 2011; 129 (2): 507–12. DOI: 10.1002/ijc.25674.
  35. Adotevi O, Pere H, Ravel P, et al. A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J Immunother. 2010; 33 (9): 991–8. DOI: 10.1097/CJI.0b013e3181f4c208.
  36. Albeituni SH, Ding C, Yan J. Hampering immune suppressors: therapeutic targeting of myeloid-derived suppressor cells in cancer. Cancer J. 2013; 19 (6): 490–501. DOI: 10.1097/ PPO.0000000000000006.
  37. Ling ZQ, Li P, Ge MH, et al. Hypermethylation-modulated downregulation of CDH1 expression contributes to the progression of esophageal cancer. Int J Mol Med. 2011; (27): 625–35.
  38. Glushankova NA, Zhitnjak IYu, Ajollo DV, Rubcova SN. Rol' E-kadherina v neoplasticheskoj jevoljucii jepitelial'nyh kletok. Uspehi molekuljarnoj onkologii. 2014; (1): 12–17.
  39. Scognamiglio G, De Chiara A, Di Bonito M, et al. Variability in immunohistochemical detection of programmed death ligand 1 (PD-L1) in cancer tissue types. Int J Mol Sci. 2014; 17 (5): pii E790.
  40. Abaza YM, Alemany C. Nanoparticle albumin-bound-paclitaxel in the treatment of metastatic urethral adenocarcinoma: the significance of molecular profiling and targeted therapy. Case Rep Urol. 2014; (2014): 1–3. DOI: 10.1155/2014/489686.
  41. Gong J, Chehrazi-Raffle A. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. Journal for Immunotherapy of Cancer. 2018; (6): 8.
  42. Velez MA, Wu Y, Dubinett SM, Dong Z, Wu S, Garon EB. Lung cancer. In: Butterfield LH, Kaufman HL, Marincola FM, editors. Cancer immunotherapy principles and practice. New York: Demosmedical, 2017; p. 728.
  43. Bellmunt J, de Wit R, Vaughn DJ, et al. KEYNOTE-045 Investigators. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017; 376 (11): 1015–26.
  44. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015; (372): 2006–17.
  45. Massard C, Gordon MS, Sharma S, et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016; 34 (26): 3119–25.
  46. Segal NH, Logan TF, Hodi FS, et al. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res. 2017; 23 (8): 1929–36.
  47. Goding SR, Wilson KA, Xie Y, et al. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol. 2013; 190 (9): 4899–909. DOI: 10.4049/jim-munol.1300271.
  48. Ohkuri T, Ghosh A, Kosaka A, et al. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol Res. 2014; 2 (12): 1199– 208. DOI: 10.1158/2326-6066.CIR-14-0099.
  49. Lu H, Wagner WM, Gad E, et al. Treatment failure of a TLR- 7 agonist occurs due to self-regulation of acute inflammation and can be overcome by IL10 blockade. J Immunol. 2010; 184 (9): 5360–67. DOI: 10.4049/jimmunol.0902997.
  50. Salmon H, Idoyaga J, Rahman A, et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 2016; 44 (4): 924–38. DOI: 10.1016/j.immuni.2016.03.012.
  51. De Witte MA, Kierkels GJ, Straetemans T, Britten CM, Kuball J. Orchestrating an immune response against cancer with engineered immune cells expressing αβTCRs, CARs, and innate immune receptors: an immunological and regulatory challenge. Cancer Immunol Immunother. 2015; 64 (7): 893–902. DOI: 10.1007/ s00262-015-1710-8.
  52. Holzinger A, Barden M, Abken H. The growing world of CAR T cell trials: a systematic review. Cancer Immunol Immunother. 2016; 65 (12): 1433–50.
  53. Eriksson E, Milenova I, Wenthe J, et al. Shaping the tumor stroma and sparking immune activation by CD40 and 4-1BB signaling induced by an armed oncolytic virus. Clin Cancer Res. 2017; 23 (19): 5846–57.
  54. El-Khoueiry AB, Hamid O, Thompson JA, et al. The relationship of pharmacodynamics (PD) and pharmacokinetics (PK) to clinical outcomes in a phase I study of OX40 agonistic monoclonal antibody (mAb) PF-04518600 (PF-8600). J Clin Oncol. 2016; 35 (suppl; abst 3027).
  55. Linch S, Kasiewicz MJ, McNamara M, Hilgart I, Farhad M, Redmond W. Galectin-3 inhibition using novel inhibitor GR-MD-02 improves survival and immune function while reducing tumor vasculature. J Immunother Cancer. 2015; 3 (suppl 2): 306.
  56. Redmond WL, Linch SN, Kasiewicz MJ. Combined targeting of co-stimulatory (OX40) and co-inhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust anti-tumor immunity. Cancer Immunol Res. 2014; 2 (2): 142–53. DOI: 10.1158/2326-6066.CIR-13-0031-T.
  57. McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002; 16 (2): 311–23.
  58. Tesaro A. Rhase I study of TSR-022, an anti-TIM-3 mono- clonal antibody, in patients with advanced solid tumors (NCT02817633). Accessed 2017 February 7; Available from: https://clinicaltrials. gov/ct2/show/NCT02817633?term=NCT02817633&rank =1.
  59. Novartis. Safety and efficacy of MBG453 as single agent and in combination with PDR001 in patients with advanced malignancies (NCT02608268). Accessed 2017 February 7; Available from: https:// clinicaltrials.gov/ct2/show/NCT02678338?term=NCT02678338& rank=1.
  60. Cancer Immunotherapy Guidelines. Accessed 2017 March 8. Available from: http://www.sitcancer.org/research/cancer-immunotherapy-guidelines.
  61. Slavyanskaya TA, Salnikova SV, i dr. Protivoopuholevye vakciny: potencial'nye misheni, sovremennye razrabotki i perspektivy ispol'zovanija. Rossijskij immunologicheskij zhurnal. 2016; 10 (19), (2–1): 498–500.
  62. Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014; (11): 509–24.
  63. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012; (12): 265–77.
  64. Slavyanskaya TA, Salnikova SV, i dr. Celenapravlennaja terapija bol'nyh s urotelial'noj karcinomoj. Allergologija i immunologija. 2016; 17 (2): 153.
  65. Beatty GL, O’Dwyer PJ, Clark J, et al. First-in-human phase I study of the oral inhibitor of indoleamine 2,3-dioxygenase-1epacadostat (INCB024360) in patients with advanced solid malignancies [ePub ahead of print]. Clin Cancer Res. 2017; pii: clincanres.2272.2016. DOI: 10.1158/1078-0432.CCR-16-2272.
  66. Peethambaram PP, Melisko ME, Rinn KJ, Alberts SR, Provost NM, Jones LA, et al. A phase I trial of immunotherapy with lapuleucel-T (APC8024) in patients with refractory metastatic tumors that express HER-2/neu. Clin Cancer Res. 2009; (15): 5937–44.
  67. Lowenfeld L, Mick R, Datta J, et al. Dendritic cell vaccination enhances immune responses and induces regression of HER2pos DCIS independent of route: results of randomized selection design trial [ePub ahead of print]. Clin Cancer Res. 2016; pii: clincanres: 1924; 2016.
  68. Lesterhuis WJ, Schreibelt G, Scharenborg NM, et al. Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used. Cancer Immunol Immunother. 2011; 60 (2): 249–60.
  69. Chkadua GZ, Zabotina TN, Burkova AA, Tamaeva ZYe, Ogorodnikova EV, Zhordania KI. Adaptirovanie metodiki kul'tivirovanija dendritnyh kletok cheloveka iz monocitov perifericheskoj krovi dlja klinicheskogo primenenija. Rossijskij bioterapevticheskij zhurnal. 2002; (3): 56–62.
  70. Sasada T, Suekane S. Variation of tumor-infiltrating lymphocytes in human cancers: controversy on clinical significance. Immunotherapy. 2011; 3 (10): 1235–51.
  71. Eloy JO, Petrilli R, Trevizan LNF, Chorilli M. Immunoliposomes: a review on functionalization strategies and targets for drug delivery. Colloids Surf B: Biointerfaces. 2017; (159): 454–67.
  72. Bilensoy E, Sarisozen C, Esendagli G, Dogan AL, Aktaş Y, Sen M, et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int J Pharm. 2009; (371): 170–6.
  73. Kosmides AK, Sidhom JW, Fraser A, Bessell CA, Schneck JP. Dual targeting nanoparticle stimulates the immune system to inhibit tumor growth. ACS Nano. 2017; 11 (6): 5417–29.
  74. Zhang Q, Neoh KG, Xu L, Lu S, Kang ET, Mahendran R, et al. Functionalized mesoporous silica nanoparticles with mucoadhesive and sustained drug release properties for potential bladder cancer therapy. Langmuir. 2014; (30): 6151–61.
  75. Sudha T, Bharali DJ, Yalcin M, Darwish NH, Coskun MD, Keating KA, et al. Targeted delivery of cisplatin to tumor xenografts via the nanoparticle component of nano-diamino-tetrac. Nanomedicine. 2017; 12 (3): 195–205.
  76. McKiernan JM, Barlow LJ, Laudano MA, Mann MJ, Petrylak DP, Benson MC. A phase I trial of intravesical nanoparticle albumin-bound paclitaxel in the treatment of bacillus Calmette-Guérin refractory nonmuscle invasive bladder cancer. J Urol. 2011; (186): 448–51.
  77. Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural killer cells control tumor growth by sensing a growth factor. Cell. 2018; 172 (3): 534–48.