ORIGINAL RESEARCH

Effects of empagliflozin and L-ornithine L-aspartate on behavior, cognitive functions, and physical performance in mice with experimentally induced steatohepatitis

Prikhodko VA1, Sysoev YuI1,2, Poveryaeva MA1, Bunyat AV1, Karev VE3, Ivkin DYu1, Sukhanov DS1, Shustov EB1, Okovityi SV1
About authors

1 Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg, Russia

2 Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia

3 Pediatric Research and Clinical Center for Infectious Diseases of FMBA, Saint Petersburg, Russia

Correspondence should be addressed: Veronika A. Prikhodko
Krasnoputilovskaya, 76, k. 2, lit. А, Saint Petersburg, 196247; moc.hcetonnimrahp@okdohirp.akinorev

About paper

Funding: this work was part of the Saint-Petersburg State University project No. 51134206.

Compliance with ethical standards: the experiments were conducted in compliance with the Basel Declaration, the Order № 199 on the Principles of Good Laboratory Practice of the Ministry of Healthcare of the Russian Federation dated April 01, 2016, and the recommendations of the Bioethics Committee of Saint Petersburg State Chemical and Pharmaceutical University. The animals were housed in a vivarium under standard controlled laboratory conditions.

Author contribution: Prikhodko VA analyzed the literature; conducted the experiments; participated in statistical analysis and interpretation of the obtained data; wrote the manuscript and prepared the figures. Sysoev YuI planned the study; analyzed the literature; conducted the experiments; participated in statistical analysis and data interpretation; wrote the manuscript and prepared the figures. Poveryaeva MA conducted the experiments; Bunyat AV planned the study; conducted the experiments; Karev VE analyzed and interpreted the obtained data; wrote the manuscript and prepared the figures; Ivkin DYu planned the study; analyzed the literature; Sukhanov DS planned the study; analyzed and interpreted the obtained data; wrote the manuscript; Shustov EB, Okovityi SV planned the study; analyzed the literature; analyzed and interpreted the obtained data; wrote the manuscript.

Received: 2020-05-22 Accepted: 2020-06-08 Published online: 2020-06-22
|
  1. Younossi ZM. Non-alcoholic fatty liver disease — A global public health perspective. J Hepatol. 2018; 70 (3): 531–44. PubMed PMID: 30414863.
  2. Ivashkin VT, Mayevskaya MV, Pavlov ChS, Tikhonov IN, Shirokova YeN, Buyeverov AO, et al. Diagnostics and treatment of non-alcoholic fatty liver disease: clinical guidelines of the Russian Scientific Liver Society and the Russian gastroenterological association. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2016; 26 (2): 24–42.
  3. Moretti R, Caruso P, Gazzin S. Non-alcoholic fatty liver disease and neurological defects. Ann Hepatol. 2019; 18 (4): 563–570. PubMed PMID: 31080056.
  4. Newton JL. Systemic Symptoms in Non-Alcoholic Fatty Liver Disease. Dig Dis. 2010; 28 (1): 214–9. PubMed PMID: 20460914.
  5. Weinstein G, Davis-Plourde K, Himali JJ, Zelber-Sagi S, Beiser AS, Seshadri S. Non-alcoholic fatty liver disease, liver fibrosis score and cognitive function in middle-aged adults: The Framingham Study. Liver Int. 2019; 39 (9): 1713–21. PubMed PMID: 31155826.
  6. Youssef NA, Abdelmalek MF, Binks M, Guy CD, Omenetti A, Smith AD, et al. Associations of depression, anxiety and antidepressants with histological severity of nonalcoholic fatty liver disease. Liver Int. 2013; 33 (7): 1062–70. PubMed PMID: 23560860.
  7. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018; 67 (1): 328–57.
  8. Dudarenko SV, Kovalenko AL, Prokopenko SM, Belogurova EV. The use of remaxol in the treatment of metabolic syndrome in patients with nonalcoholic steatohepatitis and diabetes mellitus 2 type. Experimental & Clinical Gastroenterology. 2016: 130 (6): 89–94.
  9. Mayevskaya MV, Ivashkin VT, Lunkov VD, Kryzhanovskiy SP, Pirogova IYu, Pavlov CS et al. Antioxidants in the treatment of chronic diffuse liver diseases (the results of the “MAXAR” observational program). Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2018; 28 (5): 77–97.
  10. Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia. 2013; 56 (5): 1129–39. PubMed PMID: 23423668.
  11. Almeida-Suhett CP, Graham A, Chen Y, Deuster P. Behavioral changes in male mice fed a high-fat diet are associated with IL-1β expression in specific brain regions. Physiol Behav. 2017; 169: 130–40. PubMed PMID: 27876639.
  12. Tsuchida T, Lee AY, Fujiwara N, Ybanez M, Allen B, Martins S, et al. A simple diet- and chemical-induced murine nash model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol. 2018; 69 (2): 385–95. PubMed PMID: 29572095.
  13. Pitts MW. Barnes maze procedure for spatial learning and memory in mice. Bio Protoc [Internet]. 2018 Mar [cited 2020 May 01]; 8 (5): e2744. Available from: https://bio-protocol.org/e2744.
  14. Karkishchenko NN, Karkishchenko VN, Shustov EB, Berzin IA, Kapanadze GD, Fokin YuV et al. Biomeditsinskoe (doklinicheskoe) izuchenie lekarstvennykh sredstv, vliyayushchikh na fizicheskuyu rabotosposobnost'. Metodicheskie rekomendatsii. M.: Nauchnyy tsentr biomeditsinskikh tekhnologiy Federal'nogo mediko-biologicheskogo agentstva, 2017; 134 p. Russian.
  15. Radko SV, Gusev KA, Krasnova MV, Okovityy SV, inventors; Saint Petersburg State Chemical Pharmaceutical University (SPCPU), assignee. Ustroystvo dlya krepleniya gruzov k melkim laboratornym zhivotnym. Russian Federation patent № 172475. 07.11.2017. Russian.
  16. Marchesini G, Day CP, Dufour JF, Canbay A, Nobili V, Ratziu V et al. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016; 64 (6): 1388–402. PubMed PMID: 27062661.
  17. Diaz-Moran S, Estanislau C, Canete T, Blazquez G, Raez A, Tobena A et al. Relationships of open-field behaviour with anxiety in the elevated zero-maze test: focus on freezing and grooming. World J Neurosci. 2014; 4: 1–11.
  18. Eudave DM, BeLow NM, Flandreau EI. Effects of high fat or high sucrose diet on behavioral-response to social defeat stress in mice. Neurobiol Stress. 2018; 9: 1–8. PubMed PMID: 30003122.
  19. Sestakova N, Puzserova A, Kluknavsky M, Bernatova I. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip Toxicol. 2013; 6 (3): 126–35. PubMed PMID: 24678249.
  20. Aduema W, Osim EE, Nwankwo AA. Using the elevated plus maze task in assessing anxiety and fear in swiss white mice. J Complement Med Alt Healthcare [Internet]. 2018 Apr [cited 2020 May 01]; 6 (1): 555678. Available from: https://juniperpublishers. com/jcmah/JCMAH.MS.ID.555678.php.
  21. Bakhtiyarova ShK, Kapysheva UN, Ablaykhanova NT, Baimbetova AK, Zhaksymov BI, Korganbaeva AA, et al. Povedenie zhivotnykh v razlichnykh testakh. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy. 2017; (8): 92–96. Russian.
  22. Costall B, Jones BJ, Kelly ME, Naylor RJ, Tomkins DM. Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacol Biochem Behav. 1989; 32 (3): 777– 85. PubMed PMID: 2740429.
  23. Strekalova T, Evans M, Costa-Nunes J, Bachurin S, Yeritsyan N, Couch Y, et al. Tlr4 upregulation in the brain accompanies depression- and anxiety-like behaviors induced by a high-cholesterol diet. Brain Behav Immun. 2015; 48: 42–7. PubMed PMID: 25712260.
  24. Zemdegs J, Quesseveur G, Jarriault D, Penicaud L, Fioramonti X, Guiard BP. High-fat diet-induced metabolic disorders impairs 5-HT function and anxiety-like behavior in mice. Br J Pharmacol. 2016; 173 (13): 2095–110. PubMed PMID: 26472268.
  25. Kalueff AV, Keisala T, Minasyan A, Kuuslahti M, Tuohimaa P. Temporal stability of novelty exploration in mice exposed to different open field tests. Behav Processes. 2006; 72 (1): 104–12. PubMed PMID: 16442749.
  26. Kalueff AV, Tuohimaa P. Grooming analysis algorithm for neurobehavioural stress research. Brain Res Brain Res Protoc. 2004; 13 (3): 151–8. PubMed PMID: 15296852.
  27. Hayden MR, Grant DG, Aroor AR, DeMarco VG. Empagliflozin ameliorates type 2 diabetes-induced ultrastructural remodeling of the neurovascular unit and neuroglia in the female db/db mouse. Brain Sci [Internet]. 2019 Mar [cited 2020 May 01]; 9 (3): 57. Available from: https://www.mdpi.com/2076-3425/9/3/57. PubMed PMID: 30866531.
  28. Lin B, Koibuchi N, Hasegawa Y, Sueta D, Toyama K, Uekawa K, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol. 2014; 13: 148. PubMed PMID: 25344694.
  29. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007; 2 (2): 322–8. PubMed PMID: 17406592.
  30. Ross AP, Bruggeman EC, Kasumu AW, Mielke JG, Parent MB. Non-alcoholic fatty liver disease impairs hippocampal-dependent memory in male rats. Physiol Behav. 2012; 106 (2): 133–41. PubMed PMID: 22280920.
  31. Filipovic B, Markovic O, Duric V, Filipovic B. Cognitive changes and brain volume reduction in patients with nonalcoholic fatty liver disease. Can J Gastroenterol Hepatol [Internet]. 2018 Feb [cited 2020 May 01]; 2018: 9638797. Available from: https:// www.hindawi.com/journals/cjgh/2018/9638797/. PubMed PMID: 29682494.
  32. Petta S, Tuttolomondo A, Gagliardo C, Zafonte R, Brancatelli, Cabibi D, et al. The presence of white matter lesions is associated with the fibrosis severity of nonalcoholic fatty liver disease. Medicine (Baltimore) [Internet]. 2016 Apr [cited 2020 May 01]; 95 (16): e3446. Available from: https://journals.lww.com/md-journal/ fulltext/2016/04190/ The_Presence_of_White_Matter_Lesions_ Is_Associated.35.aspx. PubMed PMID: 27100443.
  33. Okovitiy SV, Shustov EB, Belyh MA, Kirillova NV, Spasenkova OM, Ivanov AG, et al. Modeling of non-alcoholic liver steatosis: features of metabolic changes in the body of laboratory animals. Biomedicine. 2018; (4): 29–43.
  34. Sugino T, Shiri T, Kajimoto Y, Kajimoto O. L-ornithine supplementation attenuates physical fatigue in healthy volunteers by modulating lipid and amino acid metabolism. Nutr Res. 2008; 28 (11): 738–43. PubMed PMID: 19083482.
  35. Karkischenko VN, Karkischenko NN, Shustov EB, Berzin IA, Fokin YuV, Alimkina OV. Features interpretation of laboratory animal health indicators in swimming tests with load. Biomedicine. 2016; (4): 34–46.
  36. Banister EW, Cameron BJC. Exercise-induced hyperammonemia: peripheral and central effects. Int J Sports Med. 1990; 11 (Suppl 2): S129–42. PubMed PMID: 2193891.
  37. Demura S, Yamada T, Yamaji S, Komatsu M, Morishita K. The effect of L-ornithine hydrochloride ingestion on human growth hormone secretion after strength training. Advances in Bioscience and Biotechnology. 2010; 1 (1): 7–11.
  38. Okovity SV, Radko SV, Krasnova MV. Experimental assessment of influence of L-ornithine-L-aspartate on physical efference. Lechebnaya fizkul'tura i sportivnaya meditsina. 2017; 4 (142): 25–33.
  39. Rodichkin PV, Ponomarev GN, Pupkov PV, Orlov AS. Hepatoprotectors to build strength in athletes. Theory and Practice of Physical Culture. 2019; (10): 89–91.