ОБЗОР

МикроРНК и сосудистая патология глаза

Л. К. Мошетова, С. А. Ушарова, К. И. Туркина, Д. А. Сычев, И. Н. Сабурина
Информация об авторах

Российская медицинская академия непрерывного профессионального образования, Москва, Россия

Для корреспонденции: Светлана Александровна Ушарова
ул. Баррикадная, д. 2/1, стр. 1, г. Москва, 125993; moc.liamg@ratxelaltevs

Информация о статье

Вклад авторов: Л. К. Мошетова — определение концепции рукописи и ее редактирование; С. А. Ушарова, К. И. Туркина — подбор и анализ литературы, подготовка рукописи; Д. А. Сычев, И. Н. Сабурина — редактирование рукописи.

Статья получена: 26.06.2020 Статья принята к печати: 09.07.2020 Опубликовано online: 15.07.2020
|
  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75 (5): 843–54. DOI: 10.1016/0092-8674(93)90529-y.
  2. Fang Z, Du R, Edwards A, Flemington EK, Zhang K. The Sequence Structures of Human MicroRNA Molecules and Their Implications. PLoS ONE. 2013; 8 (1): e54215. Available from: https://doi.org/10.1371/journal.pone.0054215.
  3. Кучер А. Н., Бабушкина Н. П. Роль микро-РНК, генов, их биогенеза и функционирования в развитии патологических состояний у человека. Медицинская генетика. 2011; 1: 3–13.
  4. Pogribny IP. MicroRNAs as biomarkers for clinical studies. Exp Biol Med (Maywood). 2018; 243 (3): 283–90. DOI: 10.1177/1535370217731291.
  5. Navickas R, Gal D, Laucevičius A, Taparauskaitė A, Zdanytė M, Holvoet P. Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovasc Res. 2016; 111 (4): 322–37. DOI: 10.1093/cvr/cvw174.
  6. Кучер А. Н., Назаренко М. С. Роль микро-РНК при атерогенезе. Кардиология. 2017; 57 (9): 65–76. Available from: https://doi.org/10.18087/cardio.2017.9.10022.
  7. Королева Ю. А., Назаренко М. С., Кучер А. Н. Роль микроРНК в формировании нестабильных атеросклеротических бляшек. Биохимия. 2018; 83 (1): 34–46.
  8. Гареев И. Ф., Бейлерли О. А. Роль микро-РНК в ишемическом инсульте. Неврологический журнал. 2018; 23 (4), 166–75.
  9. Baulina N, Osmak G, Kiselev I, et al. NGS-identified circulating miR-375 as a potential regulating component of myocardial infarction associated network. J Mol Cell Cardiol. 2018; 121: 173–9. DOI: 10.1016/j.yjmcc.2018.07.129.
  10. Щеглова Н. Е., Калинкин М. Н. Качественные характеристики miR-126, miR-155, miR-221, miR-222 у больных гипертонической болезнью и постинфарктным кардиосклерозом [диссертация]. К., 2015.
  11. Coleman HR, Chan CC, Ferris FL 3rd, Chew EY. Age-related macular degeneration. Lancet. 2008; 372 (9652): 1835–45. DOI: 10.1016/S0140-6736(08)61759-6.
  12. Ertekin S, Yıldırım O, Dinç E, et al. Evaluation of circulating miRNAs in wet age-related macular degeneration. Molecular Vision. 2014; 20: 1057–66.
  13. Romano GL, Platania CBM, Drago F, et al. Retinal and circulating miRNAs in age-related macular degeneration: an in vivo animal and human study. Front Pharmacol. 2017; 8: 168. DOI: 10.3389/ fphar.2017.00168.
  14. Fong DS, Aiello LP, Ferris FL, Klein R. Diabetic retinopathy. Diabetes Care. 2004 Oct; 27 (10): 2540–53. Available from: https://doi.org/10.2337/diacare.27.10.2540.
  15. Qazi Y, Maddula S, Ambati BK. Mediators of ocular angiogenesis. J Genet. 2009; 88 (4): 495–515. DOI: 10.1007/s12041-009-0068-0.
  16. Qing S, Yuan S, Yun C, et al. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem. 2014; 34 (5): 1733–40. DOI: 10.1159/000366374.
  17. Qin LL, An MX, Liu YL, Xu HC, Lu ZQ. MicroRNA-126: a promising novel biomarker in peripheral blood for diabetic retinopathy. Int J Ophthalmol. 2017; 10 (4): 530–4. DOI: 10.18240/ijo.2017.04.05.
  18. Barutta F, Bruno G, Matullo G, et al. MicroRNA-126 and micro-/ macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study. Acta Diabetol. 2017; 54 (2): 133–9. DOI: 10.1007/s00592-016-0915-4.
  19. Rezk NA, Sabbah NA, Saad MS. Role of MicroRNA 126 in screening, diagnosis, and prognosis of diabetic patients in Egypt. IUBMB Life. 2016; 68 (6): 452–8. DOI: 10.1002/iub.1502.
  20. Mazzeo A, Beltramo E, Lopatina T, Gai C, Trento M, Porta M. Molecular and functional characterization of circulating extracellular vesicles from diabetic patients with and without retinopathy and healthy subjects. Exp Eye Res. 2018; 176: 69– 77. DOI: 10.1016/j.exer.2018.07.003.
  21. Yang TT, Song SJ, Xue HB, Shi DF, Liu CM, Liu H. Regulatory T cells in the pathogenesis of type 2 diabetes mellitus retinopathy by miR-155. Eur Rev Med Pharmacol Sci. 2015; 19 (11): 2010–5.
  22. Li EH, Huang QZ, Li GC, Xiang ZY, Zhang X. Effects of miRNA- 200b on the development of diabetic retinopathy by targeting VEGFA gene. Biosci Rep. 2017; 37 (2): BSR20160572. DOI: 10.1042/BSR20160572.
  23. Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008; 15 (2): 261–71. DOI: 10.1016/j. devcel.2008.07.002.
  24. Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008; 15 (2): 272–84. DOI: 10.1016/j.devcel.2008.07.008.
  25. Wang L, Lee AY, Wigg JP, Peshavariya H, Liu P, Zhang H. miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model. Int J Mol Sci. 2016; 17 (6): 895. DOI: 10.3390/ijms17060895.
  26. Desjarlais M, Rivera JC, Lahaie I, Cagnone G, Wirt M, Omri S, et al. MicroRNA expression profile in retina and choroid in oxygen-induced retinopathy model. PLoS ONE. 2019; 14 (6): e0218282. Available from: https://doi.org/10.1371/journal.pone.0218282
  27. Zhao F, Anderson C, Karnes S, et al. Expression, regulation and function of miR-126 in the mouse choroid vasculature. Exp Eye Res. 2018; 170: 169–76. DOI: 10.1016/j.exer.2018.02.026
  28. Bai X, Luo J, Zhang X, et al. MicroRNA-126 Reduces Blood- Retina Barrier Breakdown via the Regulation of VCAM-1 and BCL2L11 in Ischemic Retinopathy. Ophthalmic Research. 2017; 57 (3): 173–85. DOI: 10.1159/000454716.
  29. Yan L, Lee S, Lazzaro DR, Aranda J, Grant MB, Chaqour B. Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia. J Biol Chem. 2015; 290 (38): 23264–81. DOI: 10.1074/jbc. M115.646950.
  30. Pilakka-Kanthikeel S, Raymond A, Atluri VS, et al. Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1)-facilitated HIV restriction in astrocytes is regulated by miRNA-181a. J Neuroinflammation. 2015; 12: 66. DOI: 10.1186/ s12974-015-0285-9.
  31. Kovacs B, Lumayag S, Cowan C, Xu S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2011; 52 (7): 4402–9. DOI: 10.1167/iovs.10-6879.
  32. Lukiw WJ, Surjyadipta B, Dua P, Alexandrov PN. Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer's disease (AD) and in age-related macular degeneration (AMD). Int J Biochem Mol Biol. 2012; 3 (1): 105–16.
  33. Liu HY, Zhang YY, Zhu BL, et al. miR-21 regulates the proliferation and apoptosis of ovarian cancer cells through PTEN/PI3K/AKT. Eur Rev Med Pharmacol Sci. 2019; 23 (10): 4149–55. DOI: 10.26355/eurrev_201905_17917.
  34. Yuan J, Chen H, Ge D, et al. Mir-21 Promotes Cardiac Fibrosis After Myocardial Infarction Via Targeting Smad7. Cell Physiol Biochem. 2017; 42 (6): 2207–19. DOI: 10.1159/000479995.
  35. Sabatel C, Malvaux L, Bovy N, et al. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One. 2011; 6 (2): e16979. DOI: 10.1371/ journal.pone.0016979.
  36. Айтбаев К. А., Муркамилов И. Т., Фомин В. В., Муркамилова Ж. А., Юсупов Ф. А. МикроРНК при ишемическом инсульте. Журнал неврологии и психиатрии им. С. С. Корсакова. Спецвыпуски. 2018; 118 (3): 48–56. Available from: https://doi.org/10.17116/ jnevro20181183248-56.
  37. Li X, Wei Y, Wang Z. microRNA-21 and hypertension. Hypertens Res. 2018; 41: 649–61. Available from: https://doi.org/10.1038/ s41440-018-0071-z.
  38. Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008; 456 (7224): 980–4. DOI: 10.1038/ nature07511.
  39. Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010; 107 (5): 677–84. DOI: 10.1161/CIRCRESAHA.109.215566.
  40. Chen Q, Qiu F, Zhou K, et al. Pathogenic Role of microRNA-21 in Diabetic Retinopathy Through Downregulation of PPARα. Diabetes. 2017; 66 (6): 1671–82. DOI: 10.2337/db16-1246.