ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Новые однодоменные антитела к мезотелину и клеточные модели для разработки таргетной терапии рака молочной железы

Информация об авторах

Институт биоорганической химии имени М. М. Шемякина и Ю. А. Овчинникова, Москва, Россия

Для корреспонденции: Степан Петрович Чумаков
ул. Миклухо-Маклая, 16/10, г. Москва, 117997; moc.liamg@lukhtah

Информация о статье

Финансирование: работа выполнена при финансовой поддержке Министерства образования и науки РФ (уникальный код проекта RFMEFI60418X0205).

Соблюдение этических стандартов: работу с животными проводили в соответствии с принципами и требованиями Международной лаборатории по уходу за животными и Директивой совета европейских сообществ (86/609/EEC) от 24 ноября 1986 г.

Вклад авторов: Ю. Е. Кравченко — работа с клеточными культурами, ПЦР-РВ, ИФА; С. П. Чумаков — получение иммунных библиотек, проведение селекции, очистка белковых препаратов, цитометрия, написание рукописи; Е. И. Фролова — планирование исследования, проведение манипуляций с животными, работа с первичными культурами, редактирование рукописи.

Статья получена: 28.09.2020 Статья принята к печати: 20.10.2020 Опубликовано online: 31.10.2020
|
  1. Pastan I, Hassan R. Discovery of mesothelin and exploiting it as a target for immunotherapy. Cancer Res. 2014; 74 (11): 2907– 12. DOI: 10.1158/0008-5472.CAN-14-0337. PubMed PMID: 24824231.
  2. Einama T, Homma S, Kamachi H, Kawamata F, Takahashi K, Takahashi N, et al. Luminal membrane expression of mesothelin is a prominent poor prognostic factor for gastric cancer. Br J Cancer. 2012; 107 (1): 137–42. DOI: 10.1038/bjc.2012.235. PubMed PMID: 22644300.
  3. Kelly RJ, Sharon E, Pastan I, Hassan R. Mesothelin-targeted agents in clinical trials and in preclinical development. Mol Cancer Ther. 2012; 11 (3): 517–25. DOI: 10.1158/1535-7163.MCT-11- 0454. PubMed PMID: 22351743.
  4. Rump A, Morikawa Y, Tanaka M, Minami S, Umesaki N, Takeuchi M, et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem. 2004; 279 (10): 9190–8. DOI: 10.1074/jbc.M312372200. PubMed PMID: 14676194.
  5. Bharadwaj U, Marin-Muller C, Li M, Chen C, Yao Q. Mesothelin confers pancreatic cancer cell resistance to TNF-alpha-induced apoptosis through Akt/PI3K/NF-kappaB activation and IL-6/Mcl-1 overexpression. Mol Cancer. 2011; 10: 106. DOI: 10.1186/1476- 4598-10-106. PubMed PMID: 21880146.
  6. Li M, Bharadwaj U, Zhang R, Zhang S, Mu H, Fisher WE, et al. Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer. Mol Cancer Ther. 2008; 7 (2): 286–96. DOI: 10.1158/1535-7163.MCT-07-0483. PubMed PMID: 18281514.
  7. Cheng WF, Huang CY, Chang MC, Hu YH, Chiang YC, Chen YL, et al. High mesothelin correlates with chemoresistance and poor survival in epithelial ovarian carcinoma. Br J Cancer. 2009; 100 (7): 1144–53. DOI: 10.1038/sj.bjc.6604964. PubMed PMID: 19293794.
  8. Wang M, Li A, Sun G, Mbuagbaw L, Reid S, Lovrics PJ, et al. Association between mesothelin expression and survival outcomes in patients with triple-negative breast cancer: a protocol for a systematic review. Syst Rev. 2016; 5 (1): 133. DOI: 10.1186/ s13643-016-0313-6. PubMed PMID: 27514374.
  9. Fougner C, Bergholtz H, Norum JH, Sorlie T. Re-definition of claudin-low as a breast cancer phenotype. Nat Commun. 2020; 11 (1): 1787. DOI: 10.1038/s41467-020-15574-5. PubMed PMID: 32286297.
  10. Tchou J, Wang LC, Selven B, Zhang H, Conejo-Garcia J, Borghaei H, et al. Mesothelin, a novel immunotherapy target for triple negative breast cancer. Breast Cancer Res Treat. 2012; 133 (2): 799–804. DOI: 10.1007/s10549-012-2018-4. PubMed PMID: 22418702.
  11. Lanitis E, Poussin M, Hagemann IS, Coukos G, Sandaltzopoulos R, Scholler N, et al. Redirected antitumor activity of primary human lymphocytes transduced with a fully human anti-mesothelin chimeric receptor. Mol Ther. 2012; 20(3): 633–43. DOI: 10.1038/ mt.2011.256. PubMed PMID: 22127019.
  12. Fujiwara K, Masutani M, Tachibana M, Okada N. Impact of scFv structure in chimeric antigen receptor on receptor expression efficiency and antigen recognition properties. Biochem Biophys Res Commun. 2020; 527 (2): 350–7. DOI: 10.1016/j. bbrc.2020.03.071. PubMed PMID: 32216966.
  13. Maus MV, Plotkin J, Jakka G, Stewart-Jones G, Riviere I, Merghoub T, et al. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Mol Ther Oncolytics. 2016; 3: 1–9. DOI: 10.1038/ mto.2016.23. PubMed PMID: 29675462.
  14. Tillib SV. Prospective Applications of Single-Domain Antibodies in Biomedicine. Mol Biol (Mosk). 2020; 54 (3): 362–73. Epub 2020/06/04. DOI: 10.31857/S0026898420030167. PubMed PMID: 32492000.
  15. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993; 363 (6428): 446–8. DOI: 10.1038/363446a0. PubMed PMID: 8502296.
  16. Liu W, Song H, Chen Q, Yu J, Xian M, Nian R, et al. Recent advances in the selection and identification of antigen-specific nanobodies. Mol Immunol. 2018; 96: 37–47. DOI: 10.1016/j. molimm.2018.02.012. PubMed PMID: 29477934.
  17. Prantner AM, Turini M, Kerfelec B, Joshi S, Baty D, Chames P, et al. Anti-Mesothelin Nanobodies for Both Conventional and Nanoparticle-Based Biomedical Applications. J Biomed Nanotechnol. 2015; 11 (7): 1201–12. DOI: 10.1166/ jbn.2015.2063. PubMed PMID: 26307843.
  18. Prantner AM, Yin C, Kamat K, Sharma K, Lowenthal AC, Madrid PB, et al. Molecular Imaging of Mesothelin-Expressing Ovarian Cancer with a Human and Mouse Cross-Reactive Nanobody. Mol Pharm. 2018; 15 (4): 1403–11. DOI: 10.1021/acs. molpharmaceut.7b00789. PubMed PMID: 29462558.
  19. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29 (9): e45. DOI: 10.1093/nar/29.9.e45. PubMed PMID: 11328886.
  20. Fukumoto Y, Obata Y, Ishibashi K, Tamura N, Kikuchi I, Aoyama K, et al. Cost-effective gene transfection by DNA compaction at pH 4.0 using acidified, long shelf-life polyethylenimine. Cytotechnology. 2010; 62 (1): 73–82. DOI: 10.1007/s10616-010-9259-z. PubMed PMID: 20309632.
  21. Maass DR, Sepulveda J, Pernthaner A, Shoemaker CB. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J Immunol Methods. 2007; 324 (1–2): 13–25. Epub 2007/06/15. DOI: S0022-1759(07)00119-6 [pii] 10.1016/j.jim.2007.04.008. PubMed PMID: 17568607.
  22. Benhar I, Reiter Y. Phage display of single-chain antibody constructs. Curr Protoc Immunol. 2002; 10 (10): 9B. DOI: 10.1002/0471142735.im1019bs48. PubMed PMID: 18432867.
  23. Studier FW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005; 41 (1): 207–34. PubMed PMID: 15915565.
  24. Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX, Trivette A, et al. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat Med. 2020; 26 (9): 1422–7. DOI: 10.1038/s41591-020- 0998-x. PubMed PMID: 32651581.
  25. Liu R, Zhi X, Zhou Z, Zhang H, Yang R, Zou T, et al. Mithramycin A suppresses basal triple-negative breast cancer cell survival partially via down-regulating Kruppel-like factor 5 transcription by Sp1. Scientific reports. 2018; 8 (1): 1138. DOI: 10.1038/s41598- 018-19489-6. PubMed PMID: 29348684.
  26. Simon N, Antignani A, Sarnovsky R, Hewitt SM, FitzGerald D. Targeting a Cancer-Specific Epitope of the Epidermal Growth Factor Receptor in Triple-Negative Breast Cancer. J Natl Cancer Inst. 2016; 108 (8). DOI: 10.1093/jnci/djw028. PubMed PMID: 27075852.