ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Уровень микроРНК miR-374 повышается в клетках BeWo b30 при гипоксии

Е. Н. Князев1,2,3, С. Ю. Пауль2,4
Информация об авторах

1 Институт биоорганической химии имени М. М. Шемякина и Ю. А. Овчинникова, Москва, Россия

2 Национальный исследовательский университет «Высшая школа экономики», Москва, Россия

3 Центр трансляционных технологий, Москва, Россия

4 Троицкий инженерный центр, Москва, Россия

Для корреспонденции: Евгений Николаевич Князев
ул. Миклухо-Маклая, д. 16/10, г. Москва, 117437; moc.liamg@gvevezaynk

Информация о статье

Финансирование: исследование выполнено за счет гранта Российского научного фонда (проект № 19-74-00145).

Вклад авторов: Е. Н. Князев — анализ литературы, планирование исследования, сбор и интерпретация данных, подготовка рукописи; С. Ю. Пауль — анализ литературы, анализ данных, подготовка рукописи.

Соблюдение этических стандартов: работа выполнена с соблюдением этических принципов и требований Хельсинкской декларации Всемирной медицинской организации и последующих ее пересмотров.

Статья получена: 20.04.2021 Статья принята к печати: 28.04.2021 Опубликовано online: 30.04.2021
|
  1. Yang C, Song G, Lim W. Effects of extracellular vesicles on placentation and pregnancy disorders. Reproduction. 2019; 158 (5): R189–96. DOI: 10.1530/REP-19-0147.
  2. Li H, Ouyang Y, Sadovsky E, Parks WT, Chu T, Sadovsky Y. Unique microRNA Signals in Plasma Exosomes from Pregnancies Complicated by Preeclampsia. Hypertension. 2020; 75 (3): 762– 71. DOI: 10.1161/HYPERTENSIONAHA.119.14081.
  3. Makarova J, Turchinovich A, Shkurnikov M, Tonevitsky A. Extracellular miRNAs and Cell–Cell Communication: Problems and Prospects. Trends Biochem Sci. 2021. DOI: 10.1016/j.tibs.2021.01.007.
  4. Makarova JA, Maltseva DV, Galatenko VV, Abbasi A, Maximenko DG, Grigoriev AI, et al. Exercise immunology meets MiRNAs. Exerc Immunol Rev. 2014; 20: 135–64.
  5. Nikulin SV, Knyazev EN, Gerasimenko TN, Shilin SA, Gazizov IN, Zakharova GS, et al. Impedance Spectroscopy and Transcriptome Analysis of Choriocarcinoma BeWo b30 as a Model of Human Placenta. Mol Biol. 2019; 53 (3): 411–8. DOI: 10.1134/ S0026893319030130.
  6. Nikulin SV, Knyazev EN, Gerasimenko TN, Shilin SA, Gazizov IN, Zakharova GS, et al. Non-Invasive Evaluation of Extracellular Matrix Formation in the Intestinal Epithelium. Bull Exp Biol Med. 2018; 166 (1): 35–8. DOI: 10.1007/s10517-018-4283-7.
  7. Samatov TR, Shkurnikov MU, Tonevitskaya SA, Tonevitsky AG. Modelling the metastatic cascade by in vitro microfluidic platforms. Prog Histochem Cytochem. 2015; 49 (4): 21–9. DOI: 10.1016/j. proghi.2015.01.001.
  8. Muñoz-Sánchez J, Chánez-Cárdenas ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2019; 39 (4): 556–70. DOI: 10.1002/jat.3749.
  9. Poloznikov AA, Khristichenko AY, Smirnova NA, Hushpulian DM, Gaisina IN, Osipyants AI, et al. Structural optimization of adaptaquin, a HIF prolyl hydroxylase inhibitor. Russ Chem Bull. 2019; 68 (1):168–73. DOI: 10.1007/s11172-019-2433-3.
  10. Knyazev EN, Zakharova GS, Astakhova LA, Tsypina IM, Tonevitsky AG, Sukhikh GT. Metabolic Reprogramming of Trophoblast Cells in Response to Hypoxia. Bull Exp Biol Med. 2019; 166 (3): 321–5. DOI: 10.1007/s10517-019-04342-1.
  11. Shkurnikov MY, Makarova YA, Knyazev EN, Fomicheva KA, Nyushko KM, Saribekyan EK, et al. Profile of microRNA in Blood Plasma of Healthy Humans. Bull Exp Biol Med. 2016; 160 (5): 632–4. DOI: 10.1007/s10517-016-3235-3.
  12. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15 (12): 550. DOI: 10.1186/s13059-014-0550-8.
  13. Yang W, Rosenstiel P, Schulenburg H. aFold – using polynomial uncertainty modelling for differential gene expression estimation from RNA sequencing data. BMC Genomics. 2019; 20 (1): 364. DOI: 10.1186/s12864-019-5686-1.
  14. Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ. An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res. 2009; 37 (14): 4587–602. DOI: 10.1093/nar/gkp425.
  15. Xia N, Tan W-F, Peng Q-Z, Cai H-N. MiR-374b reduces cell proliferation and cell invasion of cervical cancer through regulating FOXM1. Eur Rev Med Pharmacol Sci. 2019; 23 (2): 513–21. DOI: 10.26355/eurrev_201901_16863.
  16. Zhou F, Sun Y, Gao Q, Wang H. microRNA-21 regulates the proliferation of placental cells via FOXM1 in preeclampsia. Exp Ther Med. 2020; 20 (3): 1871–8. DOI: 10.3892/etm.2020.8930.
  17. Baumann MU, Zamudio S, Illsley NP. Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. Am J Physiol Cell Physiol. 2007; 293 (1): C477–85. DOI: 10.1152/ajpcell.00075.2007.
  18. Francois LN, Gorczyca L, Du J, Bircsak KM, Yen E, Wen X, et al. Down-regulation of the placental BCRP/ABCG2 transporter in response to hypoxia signaling. Placenta. 2017; 51: 57–63. DOI: 10.1016/j.placenta.2017.01.125.
  19. Hayashi M, Sakata M, Takeda T, Yamamoto T, Okamoto Y, Sawada K, et al. Induction of glucose transporter 1 expression through hypoxia-inducible factor 1alpha under hypoxic conditions in trophoblast-derived cells. J Endocrinol. 2004; 183 (1): 145–54. DOI: 10.1677/joe.1.05599.
  20. Fukasawa M, Tsuchiya T, Takayama E, Shinomiya N, Uyeda K, Sakakibara R, et al. Identification and characterization of the hypoxia-responsive element of the human placental 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. J Biochem. 2004; 136 (3): 273–7. DOI: 10.1093/jb/mvh137.
  21. Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ. Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol. 1995; 268 (6 Pt 1): C1362–8. DOI: 10.1152/ajpcell.1995.268.6.C1362.
  22. Hoffmeister T, Schwenke D, Wachsmuth N, Krug O, Thevis M, Byrnes WC, et al. Erythropoietic effects of low-dose cobalt application. Drug Test Anal. 2019; 11 (2): 200–7. DOI: 10.1002/dta.2478.
  23. Befani C, Mylonis I, Gkotinakou I-M, Georgoulias P, Hu C-J, Simos G, et al. Cobalt stimulates HIF-1-dependent but inhibits HIF-2-dependent gene expression in liver cancer cells. Int J Biochem Cell Biol. 2013; 45 (11): 2359–68. DOI: 10.1016/j. biocel.2013.07.025.
  24. Youssef HMG, Marei ES. Association of MicroRNA-210 and MicroRNA-155 with severity of preeclampsia. Pregnancy Hypertens. 2019; 17: 49–53. DOI: 10.1016/j.preghy.2019.05.010.
  25. Bian H, Zhou Y, Zhou D, Zhang Y, Shang D, Qi J. The latest progress on miR–374 and its functional implications in physiological and pathological processes. J Cell Mol Med. 2019; 23 (5): 3063–76. DOI: 10.1111/jcmm.14219.
  26. Cook J, Bennett PR, Kim SH, Teoh TG, Sykes L, Kindinger LM, et al. First Trimester Circulating MicroRNA Biomarkers Predictive of Subsequent Preterm Delivery and Cervical Shortening. Sci Rep. 2019; 9 (1): 5861. DOI: 10.1038/s41598-019-42166-1.
  27. Kim SH, MacIntyre DA, Binkhamis R, Cook J, Sykes L, Bennett PR, et al. Maternal plasma miRNAs as potential biomarkers for detecting risk of small-for-gestational-age births. EBioMedicine. 2020; 62: 103145. DOI: 10.1016/j.ebiom.2020.103145.
  28. Illsley NP, Caniggia I, Zamudio S. Placental metabolic reprogramming: do changes in the mix of energy-generating substrates modulate fetal growth? Int J Dev Biol. 2010; 54 (2–3): 409–19. DOI: 10.1387/ijdb.082798ni.
  29. Monteiro LJ, Cubillos S, Sanchez M, Acuña-Gallardo S, Venegas P, Herrera V, et al. Reduced FOXM1 Expression Limits Trophoblast Migration and Angiogenesis and Is Associated With Preeclampsia. Reprod Sci. 2019; 26 (5): 580–90. DOI: 10.1177/1933719118778798.