ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Значимость анализа липидных экстрактов из отделяемого цервикального канала для диагностики плацента-ассоциированных осложнений беременности

Информация об авторах

Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени В. И. Кулакова, Москва, Россия

Для корреспонденции: Наталья Анатольевна Ломова
ул. Академика Опарина, д. 4, г. Москва, 117997; ur.xednay@avomol-ahsatan

Информация о статье

Финансирование: исследование выполнено при поддержке государственного задания Министерства здравоохранения Российской Федерации [Государственный регистрационный номер. АААА-А18-118053190026-6].

Благодарности: авторы выражают особую благодарность д.ф.-м.н., руководителю отдела системной биологии в репродукции Национального медицинского исследовательского центра акушерства, гинекологии и перинатологии имени В. И. Кулакова В. Е. Франкевичу за помощь в подготовке исследования, систематическом анализе и редактировании рукописи.

Вклад авторов: Н. А. Ломова — анализ клинических данных, систематический анализ, написание рукописи; В. В. Чаговец — проведение метаболомного анализа методом масс-спектрометрии, статистический анализ полученных данных, редактирование рукописи; А. О. Токарева — проведение метаболомного анализа методом масс-спектрометрии, обработка масс-спектрометрических данных; Е. Л. Долгополова — сбор и подготовка биологических сред, статистический анализ результатов; Т. Э. Карапетян — анализ клинических данных, статистический анализ результатов; А. П. Магомедова — сбор и подготовка биологических сред; Р. Г. Шмаков — анализ клинических данных, систематический анализ, редактирование рукописи.

Соблюдение этических стандартов: исследование одобрено этическим комитетом НЦАГиП им. В. И. Кулакова (протокол № 11 от 11 ноября 2021 г.), проведено в соответствии с требованиями Хельсинкской декларации, Международной конференции по гармонизации (ICF), Стандартами надлежащей клинической практики (GCP), ФЗ «Об основах охраны здоровья граждан в Российской Федерации»; все пациентки подписали добровольное информированное согласие на участие в исследовании.

Статья получена: 23.11.2021 Статья принята к печати: 20.12.2021 Опубликовано online: 29.12.2021
|
  1. Sutton ALM, Harper LM, Tita ATN. Hypertensive Disorders in Pregnancy. Obstet Gynecol Clin North Am. 2018; 45 (2): 333–47.
  2. Gestational Hypertension and Preeclampsia. Obstet Gynecol. 2020; 135 (6): 1492–5.
  3. Nardozza LMM, Caetano ACR, Zamarian ACP, Mazzola JB, Silva CP, Marçal VMG, et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017; 295 (5): 1061–77.
  4. Gaccioli F, Lager S. Placental Nutrient Transport and Intrauterine Growth Restriction. Front Physiol. 2016; 7. DOI: 10.3389/ fphys.2016.00040.
  5. Benton SJ, Ly C, Vukovic S, Bainbridge SA. Andrée Gruslin award lecture: Metabolomics as an important modality to better understand preeclampsia. Placenta. 2017; 60: S32–S40.
  6. Kenny LC, Broadhurst D, Brown M, Dunn WB, Redman CWG, Kell DB, et al. Detection and identification of novel metabolomic biomarkers in preeclampsia. Reprod Sci. 2008; 15 (6): 591–7.
  7. Anderson, Deborah K., Liang JW and CL. Applications of Metabolomics in the Study and Management of Preeclampsia; A Review of the Literature Rachel. Metabolomics. 2017; 13 (7): 86.
  8. Comhair SAA, McDunn J, Bennett C, Fettig J, Erzurum SC, Kalhan SC. Metabolomic Endotype of Asthma. J Immunol. 2015; 195 (2): 643–50.
  9. Moros G, Boutsikou T, Fotakis C, Iliodromiti Z, Sokou R, Katsila T, et al. Insights into intrauterine growth restriction based on maternal and umbilical cord blood metabolomics. Sci Rep. 2021; 11 (1): 1–10.
  10. Parry S, Leite R, Esplin MS, Bukowski R, Zhang H, Varner M, Andrews WW, Saade GR, Ilekis J, Reddy UM, Huang H, Sadovsky Y, Blair IA, Biggio J; Cervicovaginal fluid proteomic analysis to identify potential biomarkers for preterm birth. Am J Obstet Gynecol. 2020; 222 (5): 493.e1–493.e13. DOI: 10.1016/j. ajog.2019.11.1252. Epub 2019 Nov 20.
  11. Park S, You YA, Yun H, Choi SJ, Hwang HS, Choi SK, Lee SM, Kim YJ. Cervicovaginal fluid cytokines as predictive markers of preterm birth in symptomatic women. Obstet Gynecol Sci. 2020; 63 (4): 455–63. DOI: 10.5468/ogs.19131. Epub 2020 Jun 19.
  12. AbuZar Ansari, Heeyeon Lee, Young-Ah You, Youngae Jung, Sunwha Park, Soo Min Kim, Geum-Sook Hwang, Young Ju Kim. Identification of Potential Biomarkers in the Cervicovaginal Fluid by Metabolic Profiling for Preterm Birth Metabolites. 2020; 10 (9): 349. DOI: 10.3390/metabo10090349.
  13. Chambers MC, MacLean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology. 2012; 30 (10): 918–20.
  14. Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010; 11. DOI: 10.1186/1471-2105-11-395.
  15. Koelmel JP, Kroeger NM, Ulmer CZ, Bowden JA, Patterson RE, Cochran JA, et al. LipidMatch: An automated workflow for rulebased lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics. 2017; 18 (1): 1–11.
  16. Liebisch G, Vizcaíno JA, Köfeler H, Trötzmüller M, Griffiths WJ, Schmitz G, et al. Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res. 2013; 54 (6): 1523–30.
  17. R : A Language and Environment for Statistical Computing. 2018. Vienna, Austria. R Foundation for Statistical Computing.
  18. R team. R Studio: Integrated Development for R. 2016.
  19. Bozdogan H. Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika. 1987; 52 (3): 345–70.
  20. Kabaran S, Besler HT. Do fatty acids affect fetal programming? J Health Popul Nutr. 2015; 33: 14. DOI: 10.1186/s41043-0150018-9.PMID: 26825664.
  21. Mizugishi K, Inoue T, Hatayama H, Bielawski J, Pierce JS, Sato Y, Takaori-Kondo A, Konishi I, Yamashita K. Sphingolipid pathway regulates innate immune responses at the fetomaternal interface during pregnancy. J Biol Chem. 2015; 290 (4): 2053–68. DOI: 10.1074/jbc.M114.628867. Epub 2014 Dec 11.PMID: 25505239.
  22. Herrera E. Maternal-fetal transfer of lipid metabolites. In: RA Polin, WW Fox, SH Abman, editors. Fetal and Neonatal Physiology. 2004; p. 375–388.
  23. Pogorelova TN, Linde VA, Gunko VO, Krukier II, Seljutina SN. Metabolizm, transport i sostav lipidov v placente. Fundamental'nye issledovanija. 2015; 2 (26): 5832–6. Russian.
  24. Stewart DJ, Monge JC. Hyperlipidemia and endothelial dysfunction. Curr Opin Lipidol. 1993; 4: 319–24.
  25. Wiznitzer A, Mayer A, Novack V. Association of lipid levels during gestation with preeclampsia and gestational diabetes mellitus: a population-based study. American Journal of Obstetrics and Gynecology. 2009; 201 (5): 482.e1–482.
  26. Jin W-Y, Lin S-L, Hou R-L, Xiao-Yang Chen, Ting Han, Yan Jin, et al. Associations between maternal lipid profile and pregnancy complications and perinatal outcomes: a population-based study from China. BMC Pregnancy and Childbirth. 2016; 16: 60. Available from: https://doi.org/10.1186/s12884-016-0852-9.
  27. Oluwole AA, Adegbesan-Omilabu MA, Okunade KS. Preterm delivery and low maternal serum cholesterol level: Any correlation? Nigerian Medical Journal: Journal of the Nigeria Medical Association. 2014; 55: 5: 406–10. Available from: https:// doi.org/10.4103/0300-1652.140381.