ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Меропенем-индуцированное снижение чувствительности к колистину у Pseudomonas aeruginosa ATCC 27853

Информация об авторах

Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия

Для корреспонденции: Татьяна Александровна Савинова
ул. Островитянова, д. 1, г. Москва, 117997, Россия; moc.liamg@avonivasainat

Информация о статье

Финансирование: работа выполнена при поддержке гранта Российского научного фонда (проект № 20-15-00235).

Благодарности: авторы благодарят Центр высокоточного редактирования и генетических технологий для биомедицины ФГАОУ ВО РНИМУ им. Н. И. Пирогова Минздрава РФ за консультации по методической части исследования.

Вклад авторов: Т. А. Савинова — формальный анализ данных секвенирования, подготовка рукописи; Ю. А. Бочарова — методология, формальный анализ; А. В. Чаплин — формальный анализ данных секвенирования; Д. О. Коростин — методология, валидация данных; О. В. Шамина — методология; Н. А. Маянский, И. В. Чеботарь — концептуализация, редактирование рукописи.

Статья получена: 27.12.2021 Статья принята к печати: 10.01.2022 Опубликовано online: 19.01.2022
|
  1. Bou R, Lorente L, Aguilar A, Perpinan J, Ramos P, Peris M, et al. Hospital economic impact of an outbreak of Pseudomonas aeruginosa infections. J Hosp Infect. 2009; 71 (2): 138–42. Available from: https://doi.org/10.1016/j.jhin.2008.07.018.
  2. World Health Organization (WHO). Global Priority List of AntibioticGeneva, Switzerland: 2017. Available at: http://www.who.int/ medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_ NM_WHO.pdf (accessed Novemder 2021).
  3. Breidenstein EB, de la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011; 19 (8): 419–26. Available from: https://doi. org/10.1016/j.tim.2011.04.005
  4. Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science. 2016; 353 (6304): 1147–51. Available from: https://doi. org/10.1126/science.aag0822.
  5. Pal C, Papp B, Lazar V. Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol. 2015; 23 (7): 401–40. Available from: https://doi.org/10.1016/j.tim.2015.02.009.
  6. Gnanadhas DP, Marathe SA, Chakravortty D. Biocides–resistance, cross-resistance mechanisms and assessment. Expert Opin Investig Drugs, 2013; 22 (2): 191–06. Available from: https://doi. org/10.1517/13543784.2013.748035.
  7. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin Microbiol Infect. 2000; 6 (9): 509–15. Available from: https://doi.org/10.1046/j.1469-0691.2000.00142.x.
  8. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. Available from: http://em100.edaptivedocs.net/dashboard.aspx (accessed November 2021).
  9. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19: 455–77. Available from: https://doi.org/10.1089/cmb.2012.0021.
  10. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013; 29 (8): 1072-5. Available from: https://doi.org/10.1093/ bioinformatics/btt086.
  11. Marcais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol. 2018; 14 (1): e1005944. Available from: https://doi.org/10.1371/journal.pcbi.1005944.
  12. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014; 42: D206–14. Available from: https://doi.org/10.1093/nar/gkt1226.
  13. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30 (14): 2068–9. Available from: https://doi.org/10.1093/bioinformatics/btu153.
  14. Seemann T. Snippy: fast bacterial variant calling from NGS reads. GitHub. 2015. Available from: https://github.com/tseemann/ snippy (accessed November 2021).
  15. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012; 6 (2): 80–92. Available from: https://doi.org/10.4161/fly.19695.
  16. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance GenotypePhenotype Correlations in a Collection of Isolates. Antimicrob Agents Chemother. 2019; 63 (11): e00483-19. Available from: https://doi.org/10.1128/AAC.00483-19.
  17. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020; 75 (12): 3491–500. Available from: https://doi.org/10.1093/jac/dkaa345.
  18. Sader HS, Huband MD, Castanheira M, Flamm RK. Pseudomonas aeruginosa antimicrobial susceptibility results from four years (2012 to 2015) of the international network for optimal resistance monitoring program in the United States. Antimicrob Agents Chemother. 2017; 61 (3): e02252–16. Available from: https://doi. org/10.1128/AAC.02252-16.
  19. Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev. 2017; 41 (5): 698–722. Available from: https://doi.org/10.1093/femsre/fux020.
  20. Zahedi Bialvaei A, Rahbar M, Hamidi-Farahani R, Asgari A, Esmailkhani A, Mardani Dashti Y, et al. Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microbial Pathog. 2021; 153: 104789. Available from: https://doi.org/10.1016/j.micpath.2021.104789.
  21. Barrow K, Kwon DH. Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009; 53 (12): 5150–4. Available from: https://doi.org/10.1128/AAC.00893-09 .
  22. Miller AK, Brannon MK, Stevens L, Johansen HK, Selgrade SE, Miller SI, et al. PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2011; 55 (12): 5761–9. Available from: https://doi.org/10.1128/AAC.05391-11.