ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Изучение эффектов вариативности потенциалов мозга человека в интерфейсе мозг–компьютер на волне P300

Информация об авторах

Московский государственный университет имени М. В. Ломоносова, Москва, Россия

Для корреспонденции: Илья Петрович Ганин
Ленинские горы, д. 1, стр. 12, к. 246, Москва, 119234, Россия; ur.liam@ninagpi

Информация о статье

Финансирование: исследование выполнено за счет гранта Российского научного фонда № 21-75-00021, https://rscf.ru/project/21-75-00021/

Вклад авторов: И. П. Ганин — проведение исследования, анализ и интерпретация данных, анализ литературы, подготовка текста рукописи; А. Я. Каплан — интерпретация данных.

Соблюдение этических стандартов: исследование одобрено этическим комитетом МГУ имени М. В. Ломоносова (протокол № 2 от 11 октября 2010 г.); проведено с использованием ЭЭГ-данных (http://brain.bio.msu.ru/eeg_mov_matrix_BCI.htm), полученных авторами и опубликованных ранее (https://doi.org/10.1016/j.neulet.2011.03.089).

Статья получена: 04.05.2022 Статья принята к печати: 29.05.2022 Опубликовано online: 21.06.2022
|
  1. Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019; 16 (1): 011001.
  2. Yang S, Li R, Li H, Xu K, Shi Y, Wang Q, et al. Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation. Biomed Res Int. 2021: 9967348.
  3. Eldeeb S, Susam BT, Akcakaya M, Conner CM, White SW, Mazefsky CA. Trial by trial EEG based BCI for distress versus non distress classification in individuals with ASD. Sci Rep. 2021; 11 (1): 6000.
  4. Ганин И. П., Косиченко Е. А., Соколов А. В., Иоаннисянц О. М., Арефьев И. М., Басова А. Я., и др. Адаптация технологии интерфейсов мозг-компьютер на волне P300 для оценивания состояния больных нервной анорексией. Вестник Российского государственного медицинского университета. 2019; 2: 36–43.
  5. Carelli L, Solca F, Faini A, Meriggi P, Sangalli D, Cipresso P, Riva G, Ticozzi N, Ciammola A, Silani V, Poletti B. Brain-Computer Interface for Clinical Purposes: Cognitive Assessment and Rehabilitation. Biomed Res Int. 2017; 2017: 1695290.
  6. Luck SJ. An introduction to the event related potential technique. MIT Press, Cambridge, MA, 2014.
  7. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology. 1988; 70: 510–23.
  8. Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A, Volosyak I. Brain–Computer Interface Spellers: A Review. Brain Sciences. 2018; 8 (4): 57.
  9. Zang S, Zhou C, Chao F. Estimation of Event-Related Potentials from Single-Trial EEG. UK Workshop on Computational Intelligence. Springer, Cham. 2021; 1409: 415–27.
  10. Ouyang G, Hildebrandt A, Sommer W, Zhou C. Exploiting the intrasubject latency variability from single-trial event-related potentials in the P3 time range: A review and comparative evaluation of methods. Neurosci Biobehav Rev. 2017; 75: 1–21.
  11. Burwell SJ, Makeig S, Iacono WG, Malone SM. Reduced premovement positivity during the stimulus-response interval precedes errors: Using single-trial and regression ERPs to understand performance deficits in ADHD. Psychophysiology. 2019; 56 (9): e13392.
  12. Dowdall JR, Luczak A, Tata MS. Temporal variability of the N2pc during efficient and inefficient visual search. Neuropsychologia. 2012; 50 (10): 2442–53.
  13. Kutas M, McCarthy G and Donchin E. Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science. 1977; 197 (4305): 792–5.
  14. Zisk AH, Borgheai SB, McLinden J, Hosni SM, Deligani RJ, Shahriari Y. P300 latency jitter and its correlates in people with amyotrophic lateral sclerosis. Clinical Neurophysiology. 2021; 132 (2): 632–42.
  15. Kim JS, Lee YJ, Shim SH. What Event-Related Potential Tells Us about Brain Function: Child-Adolescent Psychiatric Perspectives. Soa Chongsonyon Chongsin Uihak. 2021; 32 (3): 93–98.
  16. Riggins T, Scott LS. P300 development from infancy to adolescence. Psychophysiology. 2020; 57 (7): e13346.
  17. Thompson DE, Warschausky S, Huggins JE. Classifier-based latency estimation: a novel way to estimate and predict BCI accuracy. Journal of neural engineering. 2013; 10 (1): 016006.
  18. Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R, et al. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology. 2000; 37 (2): 127–52.
  19. Dinstein I, Heeger DJ, Behrmann M. Neural variability: friend or foe? Trends Cogn Sci. 2015; 19 (6): 322–28.
  20. Kovarski K, Malvy J, Khanna RK, Arsène S, Batty M, Latinus M. Reduced visual evoked potential amplitude in autism spectrum disorder, a variability effect? Translational Psychiatry. 2019; 9 (1): 1–9.
  21. Gonen-Yaacovi G, Arazi A, Shahar N, Karmo A, Haar S, Meiran N, et al. Increased ongoing neural variability in ADHD. Cortex. 2016; 81: 50–63.
  22. Zeba MZ, Friganović K, Palmović M, Išgum V, Cifrek M. Assessment of mental fatigue during examination period with P300 oddball paradigm. In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), IEEE. 2019: 1479–84.
  23. McFarland DJ, Vaughan TM. BCI in practice. Progress in brain research. 2016; 228: 389–404.
  24. Ганин И. П., Ким С. А., Либуркина С. П., Галкина Н. В., Лужин А. О., Майорова Л. А., et al. Набор текста пациентами с постинсультной афазией в комплексе «НейроЧат» на основе технологии интерфейсов мозг-компьютер на волне P300. Журн. высш. нерв. деят. 2020; 70 (4): 435–45.
  25. Shishkin SL, Ganin IP, Kaplan AY. Event-related potentials in a moving matrix modification of the P300 brain–computer interface paradigm. Neuroscience letters. 2011; 496 (2): 95–99.
  26. Aricò P, Aloise F, Schettini F, Salinari S, Mattia D, Cincotti F. Influence of P300 latency jitter on event related potentialbased brain–computer interface performance. Journal of neural engineering. 2014; 11 (3): 035008.
  27. Schütz AC, Delipetkos E, Braun DI, Kerzel D, Gegenfurtner KR. Temporal contrast sensitivity during smooth pursuit eye movements. Journal of Vision. 2007; 7 (13): 3–3.
  28. Zhang B, Stevenson SS, Cheng H, Laron M, Kumar G, Tong J, et al. Effects of fixation instability on multifocal VEP (mfVEP) responses in amblyopes. Journal of Vision. 2008; 8 (3): 16.
  29. Aloise F, Aricò P, Schettini F, Riccio A, Salinari S, Mattia D, et al. A covert attention P300-based brain–computer interface: Geospell. Ergonomics. 2012; 55 (5): 538–51.
  30. McCane LM, Sellers EW, McFarland DJ, Mak JN, Carmack CS, Zeitlin D, et al. Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2014; 15 (3–4): 207–15.